分析 (Ⅰ)根據(jù)等差數(shù)列的定義構(gòu)成方程組,即可求{an}的通項(xiàng)公式;
(Ⅱ)求出求數(shù)列{cn}的通項(xiàng)公式,利用裂項(xiàng)法即可求前n項(xiàng)和Sn.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,則an=a1+(n-1)d
因?yàn)?\left\{{\begin{array}{l}{{a_7}=4}\\{{a_{19}}=2{a_9}}\end{array}}\right.$,所以$\left\{{\begin{array}{l}{{a_1}+6d=4}\\{{a_1}+18d=2({a_1}+8d)}\end{array}}\right.$,解得,a1=1,d=$\frac{1}{2}$.
所以{an}的通項(xiàng)公式為an=$\frac{n+1}{2}$.
(Ⅱ)bn=$\frac{1}{{n{a_n}}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
所以Sn=2(1-$\frac{1}{2}$$+\frac{1}{2}$$-\frac{1}{3}$+…$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
點(diǎn)評(píng) 本題主要考查等差數(shù)列的通項(xiàng)公式的求解,以及利用裂項(xiàng)法進(jìn)行求和,考查學(xué)生的計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 52 | B. | 60 | C. | 100 | D. | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com