20.函數(shù)f(x)=Asin(ωx-$\frac{π}{3}$)(A>0,ω>0)的最大值為2,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期及解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)減區(qū)間.

分析 (1)由函數(shù)的最大值求出A,由周期求出ω,可得函數(shù)的解析式.
(2)由$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,求得x的范圍,可得函數(shù)的單調(diào)減區(qū)間.

解答 解:(Ⅰ)由題可得$\frac{T}{2}$=$\frac{π}{2}$,∴T=π,
又函數(shù)f(x)的最大值為2,∴A=2,
∴f(x)=2sin(2x-$\frac{π}{3}$),
(Ⅱ)由$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,
得$\frac{5π}{12}$+kπ≤x≤kπ+$\frac{11π}{12}$,k∈Z,
∴函數(shù)單調(diào)遞減區(qū)間[$\frac{5π}{12}$+kπ,kπ+$\frac{11π}{12}$],k∈Z,

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“?x∈R,使得x2+x+1>0”的否定是( 。
A.?x0∈R,使得x02+x0+1>0B.?x∈R,使得x2+x+1>0
C.?x∈R,使得x2+x+1≤0D.?x0∈R,使得x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$($\overrightarrow a$+$\overrightarrow b$)=5,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)點(diǎn)A,B的坐標(biāo)分別為(-6,0),(6,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是$\frac{4}{9}$,則動(dòng)點(diǎn)M的軌跡加上A,B兩點(diǎn)所表示的曲線是( 。
A.B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cos(π-α)=-$\frac{\sqrt{3}}{3}$,則cosα=( 。
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓上,則該雙曲線的離心率為( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知P為拋物線y2=8x上一點(diǎn),F(xiàn)為該拋物線焦點(diǎn),若A點(diǎn)坐標(biāo)為(3,2),則|PA|+|PF|最小值為( 。
A.$\sqrt{5}$B.5C.7D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線y2=6x的交點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線與拋物線交于點(diǎn)M,N,與l交于點(diǎn)P,若$\overrightarrow{MF}$=2$\overrightarrow{FN}$,O是坐標(biāo)原點(diǎn),則|OP|=( 。
A.$\sqrt{13}$B.$\sqrt{63}$C.$\frac{4\sqrt{33}}{3}$D.$\frac{3\sqrt{33}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,用小刀切一塊長方體橡皮的一個(gè)角,在棱AD、AA1、AB上的截點(diǎn)分別是E、F、G,則截面△EFG(  )
A.一定是等邊三角形B.一定是鈍角三角形
C.一定是銳角三角形D.一定是直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案