【題目】下列函數(shù)中,其圖象既是軸對(duì)稱圖形又在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y=
B.y=﹣x2+1
C.y=2x
D.y=lg|x+1|

【答案】D
【解析】解:對(duì)于A,函數(shù)y= 的圖象是中心對(duì)稱圖形,不是軸對(duì)稱圖形,∴不滿足題意;
對(duì)于B,函數(shù)y=﹣x2+1的圖象是軸對(duì)稱圖形,在區(qū)間(0,+∞)上是單調(diào)減函數(shù),∴不滿足題意;
對(duì)于C,函數(shù)y=2x的圖象不是軸對(duì)稱圖形,∴不滿足題意;
對(duì)于D,函數(shù)y=lg|x+1|的圖象是關(guān)于直線x=﹣1對(duì)稱的圖形,且在區(qū)間(0,+∞)上是單調(diào)增函數(shù),滿足題意.
故選:D.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=2,前n項(xiàng)和為Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=lgx2 , g(x)=2lgx?
B.f(x)= ? ,g(x)=
C.f(x)=x﹣2,g(x)= ?
D.f(x)=lgx﹣2,g(x)=lg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)的離心率為 ,且過點(diǎn)( ).
(1)求橢圓方程;
(2)設(shè)不過原點(diǎn)O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點(diǎn),直線OP、OQ的斜率依次為k1、k2 , 滿足4k=k1+k2 , 試問:當(dāng)k變化時(shí),m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a=cos61°cos127°+cos29°cos37°, , ,則a,b,c的大小關(guān)系是(
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù) 在區(qū)間[﹣ ]上的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

2x﹣

π

﹣π

0

π

x

f(x)


(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫出f(x)在區(qū)間[﹣ , ]上的圖象;
(2)求f(x)的最小值及取最小值時(shí)x的集合;
(3)求f(x)在 時(shí)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)直線l:(3λ+1)x+(1﹣λ)y+6﹣6λ=0過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為 , 若直線l與x軸的正半軸有公共點(diǎn),則λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是(
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①﹣3是函數(shù)y=f(x)的極值點(diǎn);
②﹣1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.
則正確命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案