分析 設(shè)所求直線方程為$\frac{x}{a}+\frac{y}$=1,由已知可得$\frac{-2}{a}$+$\frac{2}$=1,a<0,b>0,利用基本不等式,結(jié)合三角形的面積公式,即可得出結(jié)論.
解答 解:設(shè)所求直線方程為$\frac{x}{a}+\frac{y}$=1,
由已知可得$\frac{-2}{a}$+$\frac{2}$=1,a<0,b>0,
∴$\frac{-2}{a}$+$\frac{2}$=1≥2$\sqrt{\frac{-4}{ab}}$,
∴-ab≥16,
∴S=$\frac{1}{2}$|a||b|=$\frac{1}{2}$(-ab)≥8,
當(dāng)且僅當(dāng)$\frac{-2}{a}$=$\frac{2}$,即a=-1,b=1時(shí)三角形面積最小,直線方程為x-y+1=0.
故答案為:x-y+1=0.
點(diǎn)評(píng) 考查用待定系數(shù)法求直線方程,本題先引入?yún)?shù),表示出直線的方程,再根據(jù)題設(shè)的條件建立起參數(shù)的方程求參數(shù),這是求直線方程時(shí)常用的一個(gè)思路.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin11°<sin168°<cos10° | B. | sin168°<sin11°<cos10° | ||
C. | sin11°<cos10°<sin168° | D. | sin168°<cos10°<sin11° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{15}}{2π}$倍 | B. | $\frac{\sqrt{15}}{π}$倍 | C. | $\frac{\sqrt{2}}{π}$倍 | D. | $\frac{2\sqrt{2}}{π}$倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{4}{5}$ | C. | -1 | D. | -$\frac{4}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com