A. | 1 | B. | $\frac{4}{5}$ | C. | -1 | D. | -$\frac{4}{5}$ |
分析 根據對數(shù)函數(shù)的單調性,我們易判斷出log220∈(4,5),結合已知中f(-x)=-f(x),f(x-2)=f(x+2)且x∈(-1,0)時,利用函數(shù)的周期性與奇偶性,即可得到f(log220)的值.
解答 解:∵定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),
∴函數(shù)f(x)為奇函數(shù)
又∵f(x-2)=f(x+2)
∴函數(shù)f(x)為周期為4是周期函數(shù)
又∵log232>log220>log216
∴4<log220<5
∴f(log220)=f(log220-4)=f(log2 $\frac{5}{4}$)=-f(-log2 $\frac{5}{4}$)
又∵x∈(-1,0)時,f(x)=2x,
∴f(-log2 $\frac{5}{4}$)=$\frac{4}{5}$
故f(log220)=-$\frac{4}{5}$.
故選:D.
點評 本題考查的知識點是函數(shù)的周期性和奇偶函數(shù)圖象的對稱性,其中根據已知中f(-x)=-f(x),f(x-2)=f(x+2)判斷函數(shù)的奇偶性,并求出函數(shù)的周期是解答醒的關鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | A(0)=(-∞,3] | B. | A(1)={2} | C. | A(2)=(3,+∞) | D. | A(3)=(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b>0,則$\frac{1}{a}$<$\frac{1}$ | B. | 若0>a>b,則$\frac{1}{a}$<$\frac{1}$ | ||
C. | 若a>b,c>d,則a+c>b+d | D. | 若a>b,c>d,則ac>bd |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com