9.如圖所示,在平行四邊形OABC中,點(diǎn)A(1,-2),C(3,1),則向量$\overrightarrow{OB}$的坐標(biāo)是(  )
A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)

分析 直接利用向量的加法運(yùn)算法則求解即可.

解答 解:由題意可知向量$\overrightarrow{OB}$=$\overrightarrow{OA}$+$\overrightarrow{OC}$=(4,-1).
故選:A.

點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,加法的幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足asinC=$\sqrt{3}$ccosA.
(1)求角A的大。
(2)若c=4,a=5$\sqrt{3}$,求cos(2C-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于同一平面內(nèi)的單位向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow{c}$)的最大值為( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.旋轉(zhuǎn)一枚均勻的硬幣,會(huì)出現(xiàn)( 。﹤(gè)基本事件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.不等式|x+2|>3的解集是(  )
A.(-∞,-5)∪(1,+∞)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知(x-2)n的二項(xiàng)展開式有7項(xiàng),則展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)是(  )
A.-280B.-160C.160D.560

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知關(guān)于x的二次方程x2-2(2k+1)x+k2-3=0有實(shí)數(shù)根,且兩根之積等于兩根之和的2倍,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,斜四棱柱ABCD-A1B1C1D1的底面是邊長(zhǎng)為1的正方形,側(cè)面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求證:平面AB1C⊥平面BDC1;
(Ⅱ)求四面體AB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a為實(shí)數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)設(shè)g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案