A. | 2-$\frac{2}{n+2}$ | B. | 3-$\frac{4n+6}{{n}^{2}+3n+2}$ | C. | $\frac{3}{2}-\frac{2n+3}{{n}^{2}+3n+2}$ | D. | 4-$\frac{4}{n+2}$ |
分析 由數(shù)列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$,…,$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+…+\frac{9}{10}$,…,可得{an}的通項,即可求{bn}的通項,利用裂項相消可得{bn}的前n項和Sn.
解答 解:數(shù)列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$,…,$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+…+\frac{9}{10}$,…,
可得{an}的通項an=$\frac{1+2+3+…n}{n+1}=\frac{n}{2}$.
∵bn=$\frac{1}{{a}_{n}{a}_{n+2}}$,
∴$_{n}=\frac{1}{\frac{n}{2}•\frac{n+2}{2}}$=$\frac{4}{n(n+2)}$=2($\frac{1}{n}-\frac{1}{n+2}$).
∴數(shù)列{bn}的前n項和Sn=2(1-$\frac{1}{3}$+$\frac{1}{2}-$$\frac{1}{4}$$+\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2}$)
=2($\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}$)
=3-$\frac{4n+6}{{n}^{2}+3n+2}$
故選B
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 75 | B. | 80 | C. | 155 | D. | 160 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $g(x)=cos({2x+\frac{π}{4}})$ | B. | g(x)=cos2x | C. | g(x)=-sin2x | D. | g(x)=-cos2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com