17.已知函數(shù)f(x)=cos2x,若把f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.$g(x)=cos({2x+\frac{π}{4}})$B.g(x)=cos2xC.g(x)=-sin2xD.g(x)=-cos2x

分析 根據(jù)三角函數(shù)的平移規(guī)律即可求解.

解答 解:函數(shù)f(x)=cos2x,圖象向左平移$\frac{π}{4}$個(gè)單位得到:
cos2(x+$\frac{π}{4}$)=cos(2x$+\frac{π}{2}$)=-sin2x=g(x).
故選C.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)y=2sin(x-$\frac{π}{6}$)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將得到的圖象向左平移$\frac{π}{3}$個(gè)單位長度后,所得圖象的一條對(duì)稱軸方程為( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=-$\frac{π}{4}$D.x=-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a∈R,函數(shù)f(x)=ex-a(x+1)的圖象與x軸相切.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時(shí),f(x)>mx2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在二項(xiàng)式(x+a)10的展開式中,x8的系數(shù)為45,則a=( 。
A.±1B.±2C.±$\frac{1}{2}$D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.向量$\overrightarrow a=(2,2),\overrightarrow b=(m,-1)$,若$\overrightarrow a$∥$\overrightarrow b$,則$\left|{\overrightarrow a+\overrightarrow b}\right|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C的對(duì)邊長分別為a,b,c,且$c=\sqrt{3}bsinC-ccosB$.
(1)求角B的大。
(2)若$b=2\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}+\frac{2}{4}+\frac{3}{4}$,…,$\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+…+\frac{9}{10}$,…,若bn=$\frac{1}{{a}_{n}{a}_{n+2}}$,那么數(shù)列{bn}的前n項(xiàng)和Sn等于(  )
A.2-$\frac{2}{n+2}$B.3-$\frac{4n+6}{{n}^{2}+3n+2}$C.$\frac{3}{2}-\frac{2n+3}{{n}^{2}+3n+2}$D.4-$\frac{4}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=3sin(2x+$\frac{π}{6}$).
(1)求函數(shù)f(x)的最值;
(2)判斷函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|(x-1)(x+2)>0},集合B={x|1<2x+1<4},則A∩B等于( 。
A.(-2,1)B.(-2,0)C.(0,1)D.(1,$\frac{3}{2}$)

查看答案和解析>>

同步練習(xí)冊答案