17.已知數(shù)列{an}滿足${a_1}=1,{a_n}{a_{n+1}}={2^n}$(n∈N*),則a2n=2n

分析 由已知求出數(shù)列的第二項,并得到數(shù)列{an}的偶數(shù)項構(gòu)成以2為首項,以2為公比的等比數(shù)列,然后由等比數(shù)列的通項公式得答案.

解答 解:由${a_1}=1,{a_n}{a_{n+1}}={2^n}$  ①,得a2=2,
且${a}_{n-1}{a}_{n}={2}^{n-1}$ (n≥2)②,
①÷②得:$\frac{{a}_{n+1}}{{a}_{n-1}}=2$,
∴數(shù)列{an}的偶數(shù)項構(gòu)成以2為首項,以2為公比的等比數(shù)列,
則${a}_{2n}=2×{2}^{n-1}={2}^{n}$.
故答案為:2n

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.若△ABC的三內(nèi)角A、B、C對應邊a、b、c滿足2a=b+c,則角A的取值范圍為(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.$cos(-\frac{11π}{6})+sin\frac{11π}{3}$的值等于0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>3,則f(x)<3x+5的解集為( 。
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某實驗室至少需要某種化學藥品10kg,現(xiàn)在市場上出售的該藥品有兩種包裝,一種是每袋3kg,價格為12元;另一種是每袋2kg,價格為10元.但由于保質(zhì)期的限制,每一種包裝購買的數(shù)量都不能超過5袋,則在滿足需要的條件下,花費最少( 。
A.56B.42C.44D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知向量$\overrightarrow a=(\frac{1}{2},\;\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$和向量$\overrightarrow b=(1,f(x))$,且$\overrightarrow a∥\overrightarrow b$.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)已知△ABC的三個內(nèi)角分別為A,B,C,若有$f(2A-\frac{π}{6})$=1,$BC=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知P($\sqrt{2}$,$\sqrt{3}$)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1,其左、右焦點分別為F1、F2,△PF1F2的內(nèi)切圓與x軸相切于點M,則$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值為( 。
A.$\sqrt{3}$+1B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.等差數(shù)列{an}的前n項和${S_n}=2{n^2}-13n$,則數(shù)列{|an|}的前10項和等于112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若偶函數(shù)f(x),當x∈R+時,滿足f′(x)>$\frac{f(x)}{x}$,且f(1)=0,則不等式$\frac{f(x)}{x}$≥0的解集是[-1,0)∪[1,+∞).

查看答案和解析>>

同步練習冊答案