【題目】一個圓錐的體積為,當(dāng)這個圓錐的側(cè)面積最小時,其母線與底面所成角的正切值為( )
A. B. C. D.
【答案】D
【解析】
首先設(shè)圓錐的底面半徑為,高為,從而求得圓錐的母線長為,利用圓錐的體積公式以及題中的條件,得到,將圓錐的側(cè)面積表示出來,之后設(shè),利用導(dǎo)數(shù)求得當(dāng),取得最小值,從而求得圓錐的側(cè)面積取得最小值時,此時,進(jìn)而求得圓錐的母線與底面所成角的正切值為,從而求得結(jié)果.
設(shè)圓錐的底面半徑為,高為,
所以圓錐的母線長為,
所以圓錐的體積為,
所以,
因為圓錐的側(cè)面積,
設(shè),
所以,
所以當(dāng)時,,,
此時單調(diào)遞增,
當(dāng)時,,,
此時單調(diào)遞減,
所以當(dāng),取得最小值,
即圓錐的側(cè)面積取得最小值,
所以,
所以圓錐的母線與底面所成角的正切值為,
故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)兩個共軛復(fù)數(shù)的差是純虛數(shù);(2)兩個共軛復(fù)數(shù)的和不一定是實數(shù);(3)若復(fù)數(shù)是某一元二次方程的根,則是也一定是這個方程的根;(4)若為虛數(shù),則的平方根為虛數(shù),其中正確的個數(shù)為 ( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為坐標(biāo)原點,是拋物線上異于的兩點.
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上任意一點P向x軸作垂線段,垂足為Q,點M是線段上的一點,且滿足
(1)求點M的軌跡C的方程;
(2)設(shè)直線與軌跡c交于兩點,T為C上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:
根據(jù)上表的數(shù)據(jù)得到如下的散點圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:
(i)求;
(ii)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量。
附:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若直線a,b與平面所成角都是30°,則這兩條直線平行
B.若直線a與平面、平面所成角相等,則
C.若平面內(nèi)不共線三點到平面的距離相等,則
D.已知二面角的平面角為120°,P是l上一定點,則一定存在過點P的平面,使與,與所成銳二面角都為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜好體育運動是否與性別有關(guān),對本班60人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 60 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運動的人數(shù)為7.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com