20.已知在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大;
(2)若b=2,求△ABC面積的最大值.

分析 (1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,化簡即可得出.
(2)由余弦定理,可得$4={a}^{2}+{c}^{2}-2accos\frac{3π}{4}$,再利用基本不等式的性質(zhì)、三角形面積計(jì)算公式即可得出.

解答 解:(1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,
∴sinB+cosB=0,即tanB=-1,
又0<B<π,∴B=$\frac{3π}{4}$.
(2)由余弦定理,可得$4={a}^{2}+{c}^{2}-2accos\frac{3π}{4}$=${a}^{2}+{c}^{2}+\sqrt{2}ac$≥2ac+$\sqrt{2}$ac,
∴ac≤$\frac{4}{2+\sqrt{2}}$=2(2-$\sqrt{2}$),當(dāng)且僅當(dāng)a=c時取等號.
∴S△ABC=$\frac{1}{2}ac$sinB≤$\frac{1}{2}×2(2-\sqrt{2})×\frac{\sqrt{2}}{2}$=$\sqrt{2}$-1,
故△ABC面積的最大值為:$\sqrt{2}$-1.

點(diǎn)評 本題考查了三角形面積計(jì)算公式、正弦定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果執(zhí)行下面的程序框圖,那么輸出的結(jié)果s為( 。
A.8B.48C.384D.384

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.證明:(1)求證:sinθ(1+tanθ)+cosθ•(1+$\frac{1}{tanθ}$)=$\frac{1}{sinθ}$+$\frac{1}{cosθ}$.$(2)證明:\frac{tanx×sinx}{tanx-sinx}=\frac{tanx+sinx}{tanx×sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△abc中,若a=$\sqrt{3}$,A=$\frac{π}{3}$.則b+c的取值范圍$(\sqrt{3},2\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}$sin2x-2cos2x-a在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的最大值為2.
(1)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(2)設(shè)$α,β∈({0,\frac{π}{2}}),f({\frac{1}{2}α+\frac{π}{12}})=\frac{10}{13},f({\frac{1}{2}β+\frac{π}{3}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,已知圓A的圓心在直線y=-2x上,且該圓存在兩點(diǎn)關(guān)于直線x+y-1=0對稱,又圓A與直線l1:x+2y+7=0相切,過點(diǎn)B(-2,0)的動直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn),直線l與l1相交于點(diǎn)P.
(1)求圓A的方程;
(2)當(dāng)$|{MN}|=2\sqrt{19}$時,求直線l的方程;
(3)($\overrightarrow{BM}$+$\overrightarrow{BN}$)•$\overrightarrow{BP}$是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知M是關(guān)于x的不等式x2+(a-4)x-(a+1)(2a-3)<0的解集,且M中的一個元素是0,求實(shí)數(shù)a的取值范圍,并用a表示出M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-2$\overrightarrow$|=1,則(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=( 。
A.-1B.4C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,AB=2,若該四棱錐的所有頂點(diǎn)都在表面積為16π的同一球面上,則PA=$2\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案