15.已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動(dòng)圓在圓C1內(nèi)部且和圓C1相內(nèi)切,和圓C2相外切,則動(dòng)圓圓心M的軌跡方程為(  )
A.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{48}$=1B.$\frac{{x}^{2}}{48}$+$\frac{{x}^{2}}{64}$=1C.$\frac{{x}^{2}}{48}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

分析 根據(jù)兩圓外切和內(nèi)切的判定,圓心距與兩圓半徑和差的關(guān)系,設(shè)出動(dòng)圓半徑為r,消去r,根據(jù)圓錐曲線的定義,即可求得動(dòng)圓圓心M的軌跡,進(jìn)而可求其方程.

解答 解:設(shè)動(dòng)圓圓心M(x,y),半徑為r,
∵圓M與圓C1:(x-4)2+y2=169內(nèi)切,與圓C2:(x+4)2+y2=9外切,
∴|MC1|=13-r,|MC2|=r+3,
∴|MC1|+|MC2|=16>8,
由橢圓的定義,M的軌跡為以C1,C2為焦點(diǎn)的橢圓,
可得a=8,c=4;則
b2=a2-c2=48;
∴動(dòng)圓圓心M的軌跡方程:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1.
故選:D.

點(diǎn)評(píng) 考查兩圓的位置關(guān)系及判定方法和橢圓的定義和標(biāo)準(zhǔn)方程,要注意橢圓方程中三個(gè)參數(shù)的關(guān)系:b2=a2-c2,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,已知a=1,c=$\sqrt{3}$,B=$\frac{5π}{6}$,則b等于( 。
A.$\sqrt{7}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.?dāng)S三枚硬幣,至少出現(xiàn)兩個(gè)正面的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若存在x∈R,使得a3x-4≥${2^{{x^2}-x}}$(a>0且a≠1)成立,則實(shí)數(shù)a的取值范圍是a≥2或0<a$≤\root{9}{2}$且a≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a+b+c=2,且a、b、c是正數(shù),求證:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={1,2,3,4},B={x|x=2n-1,n∈A},則A∩B=(  )
A.{1,3}B.{2,4}C.{1,4}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(2,-1),$\overrightarrow c$=(-1,2),則$\overrightarrow c$等于( 。
A.$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow a$-2$\overrightarrow b$C.$\overrightarrow a$-$\overrightarrow b$D.-$\overrightarrow a$+$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=3-sinx-cos2x的最小值是$\frac{7}{4}$,最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在四棱柱ABCD-A1B1C1D1中,AB=BC=1,AA1=3,直線AD1,DC1所成角的正弦值為$\frac{\sqrt{19}}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案