11.分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{1}{1+\sqrt{x}}$+$\frac{1}{1-\sqrt{x}}$;
(2)y=sin2$\frac{x}{2}$;
(3)y=$\frac{ln(2x+1)}{x}$.

分析 (1)先通分化為y=$\frac{2}{1-x}$,再利用導(dǎo)數(shù)的運(yùn)算法則即可得出.
(2)利用倍角公式化為y=$\frac{1-cosx}{2}$,再利用導(dǎo)數(shù)的運(yùn)算法則即可得出.
(3)利用復(fù)合函數(shù)及其除法的導(dǎo)數(shù)的運(yùn)算法則即可得出.

解答 解:(1)y=$\frac{1}{1+\sqrt{x}}$+$\frac{1}{1-\sqrt{x}}$=$\frac{2}{1-x}$,y′=$\frac{2}{(1-x)^{2}}$.
(2)y=$\frac{1-cosx}{2}$,y′=$\frac{1}{2}$sinx.
(3)y′=$\frac{2x•ln(2x+1)-ln(2x+1)}{{x}^{2}}$=$\frac{(2x-1)ln(2x+1)}{{x}^{2}}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則、倍角公式、通分,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-2n$,那么它的通項(xiàng)公式為an2n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,是相等函數(shù)的是(  )
A.f(x)=x,g(x)=($\sqrt{x}}$)2B.f(x)=x+2,g(x)=$\frac{x^2-4}{x-2}$
C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=$\left\{{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|ax2+ax+6=0},若集合A⊆{2,3},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列命題:
①三角形的內(nèi)角必是第一、二象限角,
②第一象限角必是銳角,
③不相等的角終邊一定不相同,
④若β=α+k•720°(k∈Z),則α和β終邊相同,
⑤點(diǎn)P(tanα,cosα)在第三象限,則角α的終邊在第二象限.
其中正確的是(  )
A.①②B.③④C.②⑤D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.要證明“$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”可選擇的方法有以下幾種,其中最合理的是②(填序號(hào)).①反證法,②分析法,③綜合法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知tanα=-3.
(1)求$\frac{sin(π-α)-5sin(\frac{3π}{2}-α)}{cos(5π-α)+sin(α-3π)}$的值;
(2)求3cos2α-sin2α+4sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若l1:x+(1+m)y+(m-2)=0,l2:mx+2y+8=0是兩條平行直線,則m的值為( 。
A.1或-2B.1C.-2D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案