【題目】已知拋物線C: ,點(diǎn)在x軸的正半軸上,過點(diǎn)M的直線與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若,且直線的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?
【答案】(1)以AB為直徑的圓的方程是;(2)存在定點(diǎn),滿足題意.
【解析】試題分析:(1)由題意得,直線的方程與拋物線方程聯(lián)立,利用韋達(dá)定理,可得圓心坐標(biāo)和圓的半徑,從而可得圓的方程.
(2)若存在定點(diǎn)這樣的點(diǎn),使得恒為定值;直線: 與拋物線C: 聯(lián)立,計(jì)算,,利用恒為定值,可求出點(diǎn)的坐標(biāo).
試題解析:(1)當(dāng)時(shí), ,此時(shí),點(diǎn)M為拋物線C的焦點(diǎn),
直線的方程為,設(shè),聯(lián)立,
消去y得, ,∴, ,∴圓心坐標(biāo)為.
又,∴圓的半徑為4,∴圓的方程為.
(2)由題意可設(shè)直線的方程為,則直線的方程與拋物線C: 聯(lián)立,
消去x得: ,則, ,
對(duì)任意恒為定值,
于是,此時(shí).
∴存在定點(diǎn),滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校射擊隊(duì)的某一選手射擊一次,其命中環(huán)數(shù)的概率如表:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該選手射擊一次,
(1)命中9環(huán)或10環(huán)的概率.
(2)至少命中8環(huán)的概率.
(3)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓的圓心, 是圓上動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)和上的點(diǎn),滿足
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)若斜率為的直線與圓相切,與(1)中所求點(diǎn)的軌跡教育不同的兩點(diǎn) 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過兩點(diǎn), ,且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線過點(diǎn)且與圓有兩個(gè)不同的交點(diǎn), ,若直線的斜率大于0,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦的垂直平分線過點(diǎn),若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓心為,定點(diǎn), 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點(diǎn).當(dāng)且滿足時(shí),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為.
(1)若,過點(diǎn), 的直線與拋物線相交于另一點(diǎn),求的值;
(2)若直線與拋物線相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問:是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來(lái)最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為12萬(wàn)輛時(shí)的濃度.
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量, ,且滿足.
(1)求點(diǎn)的軌跡方程所代表的曲線;
(2)若點(diǎn), , 是曲線上的動(dòng)點(diǎn),點(diǎn)在直線上,且滿足, ,當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com