5.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\sqrt{2}$B.1C.2D.4

分析 由已知的三視圖得到幾何體是底面為俯視圖,高為2的三棱錐,根據(jù)數(shù)據(jù)求體積.

解答 解:由已知的三視圖得到幾何體是底面為俯視圖,高為2的三棱錐,
體積為$\frac{1}{3}×\frac{1}{2}×3×1×2$=1;
故選:B.

點(diǎn)評(píng) 本題考查了三棱錐的三視圖以及體積求法;關(guān)鍵是還原幾何體,利用三視圖中的數(shù)據(jù)計(jì)算體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線3x-4y+5=0和(x-1)2+(y+3)2=4的位置關(guān)系是相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.試比較下列各組數(shù)的大小
(1)$\sqrt{12}$-$\sqrt{11}$和$\sqrt{11}$-$\sqrt{10}$
(2)$\frac{2}{\sqrt{6}+4}$和2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在(x2-$\frac{1}{2x}$)8的展開式中,含x項(xiàng)的系數(shù)為( 。
A.$\frac{3}{2}$B.$\frac{7}{4}$C.-$\frac{7}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|-3<x<3},B={x|y=lg(x+1)},則集合A∩B為( 。
A.[0,3)B.[-1,3)C.(-1,3)D.(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在極坐標(biāo)系中,圓C的方程為ρ=2asinθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,設(shè)直線的參數(shù)方程為$\left\{\begin{array}{l}x=t+2\\ y=2t+3\end{array}\right.$(θ為參數(shù)).
(1)求圓C的直角坐標(biāo)方程和直線的普通方程;
(2)若直線l與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為$\sqrt{2}$,且雙曲線C與斜率為2的直線l有一個(gè)公共點(diǎn)P(-2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實(shí)數(shù)x,y滿足|x|+|y|≤1,則|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$,取到此最小值時(shí)x=$\frac{1}{3}$,y=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}={1^{\;}}$(a>b>0)的長(zhǎng)軸長(zhǎng)為2$\sqrt{3}$,右焦點(diǎn)為F(c,0),且a2,b2,c2成等差數(shù)列.
(1)求橢圓C的方程;
(2)過點(diǎn)F分別作直線l1,l2,直線l1與橢圓C交于點(diǎn)M,N,直線l2與橢圓C交于點(diǎn)P,Q,且l1⊥l2,求四邊形MPNQ面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案