【題目】若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是 .
【答案】(﹣∞,2ln2﹣2)
【解析】解:∵函數(shù)f(x)=x2﹣ex﹣ax,
∴f′(x)=2x﹣ex﹣a,
∵函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,
∴f′(x)=2x﹣ex﹣a>0,
即a<2x﹣ex有解,
令g′(x)=2﹣ex ,
g′(x)=2﹣ex=0,x=ln2,
g′(x)=2﹣ex>0,x<ln2,
g′(x)=2﹣ex<0,x>ln2
∴當(dāng)x=ln2時(shí),g(x)max=2ln2﹣2,
∴a<2ln2﹣2即可.
所以答案是:(﹣∞,2ln2﹣2)
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)已知點(diǎn)P在線段EF上,=2.求三棱錐E-APD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知曲線C1:y=(x>0)及曲線C2:y= (x>0).C1上的點(diǎn)Pn的橫坐標(biāo)為an,過C1上的點(diǎn)Pn(n∈N+)作直線平行于x軸,交曲線C2于點(diǎn)Qn,再過點(diǎn)Qn作直線平行于y軸,交曲線C1于點(diǎn)Pn+1.
試求an+1與an之間的關(guān)系,并證明a2n-1<<a2n(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (其中θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ﹣ρsinθ+1=0.
(1)分別寫出曲線C1與曲線C2的普通方程;
(2)若曲線C1與曲線C2交于A,B兩點(diǎn),求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個(gè)月.經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日的30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級(jí),其中,中度污染(四級(jí))指數(shù)為151~200;重度污染(五級(jí))指數(shù)為201~300;嚴(yán)重污染(六級(jí))指數(shù)大于300.下面表1是某觀測點(diǎn)記錄的4天里AQI指數(shù)M與當(dāng)天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)的統(tǒng)計(jì)結(jié)果.
表1
AQI指數(shù)M | 900 | 700 | 300 | 100 |
空氣可見度y/千米 | 0.5 | 3.5 | 6.5 | 9.5 |
表2
AQI指數(shù) | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設(shè)變量x=,根據(jù)表1的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)根據(jù)表2估計(jì)這30天AQI指數(shù)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Q2=稱為x,y的二維平方平均數(shù),A2=稱為x,y的二維算術(shù)平均數(shù),G2=稱為x,y的二維幾何平均數(shù),H2=稱為x,y的二維調(diào)和平均數(shù),其中x,y均為正數(shù).
(1)試判斷G2與H2的大小,并證明你的猜想.
(2)令M=A2﹣G2,N=G2﹣H2,試判斷M與N的大小,并證明你的猜想.
(3)令M=A2﹣G2,N=G2﹣H2,P=Q2﹣A2,試判斷M、N、P三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com