【題目】已知函數(shù) f(x) = -ax(a > 0).
(1) 當(dāng) a = 1 時(shí),求證:對(duì)于任意 x > 0,都有 f(x) > 0 成立;
(2) 若函數(shù) y = f(x) 恰好在 x = x1 和 x = x2 兩處取得極值,求證:< ln a.
【答案】(1)見(jiàn)解析; (2)見(jiàn)解析.
【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù),利用函數(shù)單調(diào)性和函數(shù)的最值即可證得,
(2)根據(jù)題意可得x1,x2是方程f′(x)=0的兩個(gè)實(shí)數(shù)根,不妨設(shè)x1<x2,可以判斷a>1,分別根據(jù)函數(shù)零點(diǎn)存在定理可得f′(x1)=f′(x2)=0,可得aa=0,即可得到a,則f″()(),設(shè)t>0,再根據(jù)函數(shù)g(t)=(2t﹣et)et+1,求導(dǎo),借助于(1)的結(jié)論即可證明.
(1)當(dāng)a=1時(shí),f(x)=exx2﹣x,
則f′(x)=ex﹣x﹣1,
∴f″(x)=ex﹣1>0,(x>0),
∴f′(x)=ex﹣x﹣1單調(diào)遞增,
∴f′(x)>f′(0)=0,
∴f(x)單調(diào)遞增,
∴f(x)>f(0)=1>0,
故對(duì)于任意x>0,都有f(x)>0成立;
(2)∵函數(shù)y=f(x)恰好在x=x1和x=x2兩處取得極值
∴x1,x2是方程f′(x)=0的兩個(gè)實(shí)數(shù)根,不妨設(shè)x1<x2,
∵f′(x)=ex﹣ax﹣a,f″(x)=ex﹣a,
當(dāng)a≤0時(shí),f″(x)>0恒成立,∴f′(x)單調(diào)遞增,f′(x)=0至多有一個(gè)實(shí)數(shù)解,不符合題意,
當(dāng)a>0時(shí),f″(x)<0的解集為(﹣∞,lna),f″(x)>0的解集為(lna,+∞),
∴f′(x)在(﹣∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,
∴f′(x)min=f′(lna)=﹣alna,
由題意,應(yīng)有f′(lna)=﹣alna<0,解得a>1,
此時(shí)f′(﹣1)0,
∴存在x1∈(﹣1,lna)使得f′(x1)=0,
易知當(dāng)時(shí),f(x).
∴存在x2∈(lna,)使得f′(x2)=0,
∴a>1滿足題意,
∵f′(x1)=f′(x2)=0,
∴aa=0,
∴a,
∴f″()a(),
設(shè)t>0,
∴et,
設(shè)g(t)=(2t﹣et)et+1,
∴g′(t)=2(t+1﹣et)et,
由(1)可知,g′(t)=2(t+1﹣et)et<0恒成立,
∴g(t)單調(diào)遞減,
∴g(t)<g(0)=0,
即f″()<0,
∴
∴lna.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí)?的數(shù)學(xué)期望達(dá)到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為“國(guó)際數(shù)學(xué)節(jié)”,其來(lái)源是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的“數(shù)學(xué)嘉年華”活動(dòng)中,設(shè)計(jì)了如下的有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,則分別獲得5個(gè)、10個(gè)、20個(gè)學(xué)豆的獎(jiǎng)勵(lì).游戲還規(guī)定:當(dāng)選手闖過(guò)一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒(méi)有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過(guò)第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功與否互不影響.
(1)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率;
(2)設(shè)該選手所得學(xué)豆總數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對(duì)邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像相鄰兩條對(duì)稱軸間的距離為,且,則以下命題中為假命題的是( )
A.函數(shù)在上是增函數(shù).
B.函數(shù)圖像關(guān)于點(diǎn)對(duì)稱
C.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到
D.函數(shù)的圖象關(guān)于直線對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中、均為實(shí)數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)設(shè),若,在區(qū)間上總存在、使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,國(guó)內(nèi)很多評(píng)價(jià)機(jī)構(gòu)經(jīng)過(guò)反復(fù)調(diào)研論證,研制出“增值評(píng)價(jià)”方式。下面實(shí)例是某市對(duì)“增值評(píng)價(jià)”的簡(jiǎn)單應(yīng)用,該市教育評(píng)價(jià)部門對(duì)本市所高中按照分層抽樣的方式抽出所(其中,“重點(diǎn)高中”所分別記為,“普通高中”所分別記為),進(jìn)行跟蹤統(tǒng)計(jì)分析,將所高中新生進(jìn)行了統(tǒng)的入學(xué)測(cè)試高考后,該市教育評(píng)價(jià)部門將人學(xué)測(cè)試成績(jī)與高考成績(jī)的各校平均總分繪制成了雷達(dá)圖.點(diǎn)表示學(xué)校入學(xué)測(cè)試平均總分大約分,點(diǎn)表示學(xué)校高考平均總分大約分,則下列敘述不正確的是( )
A.各校人學(xué)統(tǒng)一測(cè)試的成績(jī)都在分以上
B.高考平均總分超過(guò)分的學(xué)校有所
C.學(xué)校成績(jī)出現(xiàn)負(fù)增幅現(xiàn)象
D.“普通高中”學(xué)生成績(jī)上升比較明顯
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a,bR).
(1)當(dāng)a=b=1時(shí),求的單調(diào)增區(qū)間;
(2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)a=0時(shí),若的解集為(m,n),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com