分析 畫出圖形,正四棱錐P-ABCD的外接球的球心在它的高PO1上,記為O,求出PO1,OO1,解出球的半徑,求出球的表面積.
解答 解:∵正四棱錐P-ABCD的五個頂點在同一球面上,
∴正四棱錐P-ABCD的外接球的球心在它的高PO1上,
記球心為O,PO=AO=R,
∵正棱錐的底面邊長為4,側(cè)棱長為3,
∴AO1=$\frac{1}{2}\sqrt{16+16}$=2$\sqrt{2}$,
∴PO1=$\sqrt{9-8}$=1,OO1=R-1(此時O在PO1的延長線上),
在Rt△AO1O中,R2=8+(R-1)2,
解得R=$\frac{9}{2}$,∴球的表面積S=$4π×(\frac{9}{2})^{2}$=81π.
故答案為:81π.
點評 本題考查球的表面積,球的內(nèi)接體問題,考查計算能力,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com