【題目】已知美國蘋果公司生產(chǎn)某款iPhone手機的年固定成本為40萬美元每生產(chǎn)1萬只還需另投入16萬美元.設蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機x萬只并全部銷售完每萬只的銷售收入為R(x)萬美元,且R(x)=

(1)寫出年利潤W(萬美元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;

(2)當年產(chǎn)量為多少萬只時,蘋果公司在該款iPhone手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

【答案】(1)W(2)x32時,W取最大值為6104.

【解析】(1)當0<x≤40W=xR(x)-(16x+40)=-6x2+384x-40;

當x>40,W=xR(x)-(16x+40)=--16x+7360.

所以,W

(2)①當0<x≤40,W=-6(x-32)2+6104,

所以Wmax=W(32)=6104;

當x>40時,W=--16x+7360

由于+16x≥2=1600,

當且僅當=16x即x=50∈(40,+∞)時W取最大值為5760.

綜合①②知,當x32時W取最大值為6104.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,邊AB、AD的長分別為2,1,若M,N分別是邊BC、CD上的點,且滿足 = =λ.

(1)當λ= 時,求向量 夾角的余弦值;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個結(jié)論:
①在△ABC中,若sinA>sinB,則必有cosA<cosB;
②在△ABC中,若a,b,c成等比數(shù)列,則角B的取值范圍為
③等比數(shù)列{an}中,若a3=2,a7=8,則a5=±4;
④等差數(shù)列{an}的前n項和為Sn , S10<0且S11=0,滿足Sn≥Sk對n∈N*恒成立,則正整數(shù)k構(gòu)成集合為{5,6}
⑤若關(guān)于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集為R,則a的取值范圍為
其中正確結(jié)論的序號是 . (填上所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實數(shù)的值;

(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);

(3)若從數(shù)學成績在兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示, 矩形所在的平面, 分別是的中點.

(1)求證: 平面;

(2)求證: .

(3)當滿足什么條件時,能使平面成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,正確的是( )

①兩個平面同時垂直第三個平面,則這兩個平面可能互相垂直

②方程 表示經(jīng)過第一、二、三象限的直線

③若一個平面中有4個不共線的點到另一個平面的距離相等,則這兩個平面平行

④方程可以表示經(jīng)過兩點的任意直線

A. ②③ B. ①④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(m+)(m∈R,且m>0).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在(4,+∞)上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓為參數(shù))上的每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,得到曲線

(1)求出的普通方程;

(2)設直線 的交點為 ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

同步練習冊答案