17.比較${∫}_{0}^{3}$$\sqrt{5-\frac{5}{9}{x}^{2}}$dx與${∫}_{0}^{3}$$\sqrt{3-\frac{1}{3}{x}^{2}}$dx的大小.

分析 由定積分的幾何意義和橢圓的知識可得.

解答 解:由y=$\sqrt{5-\frac{5}{9}{x}^{2}}$平方整理可得$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1,
∴${∫}_{0}^{3}$$\sqrt{5-\frac{5}{9}{x}^{2}}$dx表示橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的四分之一個橢圓的面積,
同理可得${∫}_{0}^{3}$$\sqrt{3-\frac{1}{3}{x}^{2}}$dx表示橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的四分之一個橢圓的面積,
故${∫}_{0}^{3}$$\sqrt{5-\frac{5}{9}{x}^{2}}$dx>${∫}_{0}^{3}$$\sqrt{3-\frac{1}{3}{x}^{2}}$dx

點評 本題考查定積分的幾何意義,涉及橢圓的知識,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四邊形ABCD中,AB=4,BC=$\frac{3}{2}$,CD=$\frac{5}{2}$,∠A=$\frac{π}{3}$,cos∠ADB=$\frac{1}{7}$.
(1)求BD得長;
(2)求∠ABC+∠ADC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,|$\overrightarrow{AB}$|=13,|$\overrightarrow{BC}$|=5,|$\overrightarrow{CA}$|=12,則$\overrightarrow{AB}$$•\overrightarrow{BC}$的值是-25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在河的一側(cè)有一塔CD=12m,河寬BC=3m,另一側(cè)有點A,AB=4m,則點A與塔頂D的距離AD=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖三角形數(shù)陣滿足:
(1)第n行首尾兩數(shù)均為n;
(2)圖中的遞推關(guān)系類似于楊輝三角.
則第n(n≥2)行第2個數(shù)是$\frac{{n}^{2}-n+2}{2}$,第n行的和是2n+2n-1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線l與平面α垂直的一個充分條件是( 。
A.l垂直于平面α內(nèi)的一條直線B.l垂直于平面α內(nèi)的兩條直線
C.l垂直于平面α內(nèi)的無數(shù)條直線D.l垂直于平面α內(nèi)的任一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)M,N是拋物線C:y2=2px(p>0)上任意兩點,點E的坐標(biāo)為(-λ,0)(λ≥0),若$\overrightarrow{EM}$$•\overrightarrow{EN}$的最小值為0,則λ=$\frac{1}{2}$p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$\frac{5π}{2}$<α<3π,則$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosα}}$等于( 。
A.cos$\frac{α}{4}$B.-cos$\frac{α}{4}$C.sin$\frac{α}{4}$D.-sin$\frac{α}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=4sin(2x+$\frac{π}{6}$),x∈R,則下列命題正確的是(  )
A.f(x)在區(qū)間[0,$\frac{π}{2}$]內(nèi)是增函數(shù)
B.若?x1≠x2,f(x1)=f(x2)=0,則x1-x2必是π的整數(shù)倍
C.f(x)的圖象關(guān)于點(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)對稱
D.f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

同步練習(xí)冊答案