14.設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+b=6,則$\frac{1}{x}$+$\frac{1}{y}$的最大值為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

分析 根據(jù)對數(shù)的運算性質(zhì)和基本不等式即可求出.

解答 解:設(shè)x,y∈R,a>1,b>1,ax=by=3,a+b=6,
∴x=loga3,y=logb3,
∴$\frac{1}{x}$+$\frac{1}{y}$=log3a+log3b=log3ab≤log3($\frac{a+b}{2}$)=2,當(dāng)且僅當(dāng)a=b=3時取等號,
故選:D

點評 本題考查了不等式的基本性質(zhì)和對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}各項為正數(shù),且a2=4a1,${a_{n+1}}=a_n^2+2{a_n}({n∈{N^*}})$.
(Ⅰ)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{log3(an+1)}的前n項和為Tn,求使Tn>520成立時n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、B、C相互獨立,如果P(AB)=$\frac{1}{6}$,$P({\overline BC})=\frac{1}{8}$,$P({AB\overline C})=\frac{1}{8}$,$P({\overline AB})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式$\frac{3x+4}{x-2}$>4的解集是(2,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)=log2(2+|x|)-$\frac{1}{2+{x}^{2}}$,則使得f(x-1)>f(2x)成立的x取值范圍是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=log2||x|-1|.
(1)作出函數(shù)f(x)的大致圖象;
(2)指出函數(shù)f(x)的奇偶性、單調(diào)區(qū)間及零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(1,0)到雙曲線$\frac{x^2}{4}-{y^2}=1$的漸近線的距離是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(1+2x)6展開式中x3項的系數(shù)為160(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列四個結(jié)論:①b<0;  ②b2-4ac>0;③4a-2b+c>0;   ④a-b+c<0
其中正確結(jié)論有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案