分析 對C1:y=ex和曲線C2:y=-$\frac{1}{{e}^{x}}$求導(dǎo)可得:y′=ex,y′=$\frac{1}{{e}^{x}}$.由題意可得${e}^{{x}_{1}}$=$\frac{1}{{e}^{{x}_{2}}}$.另一方面:$\frac{-\frac{1}{{e}^{{x}_{2}}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$=${e}^{{x}_{1}}$=$\frac{1}{{e}^{{x}_{2}}}$.可得:x1=x2+2.即可得出.
解答 解:對C1:y=ex和曲線C2:y=-$\frac{1}{{e}^{x}}$求導(dǎo).
y′=ex,y′=$\frac{1}{{e}^{x}}$.
∴${e}^{{x}_{1}}$=$\frac{1}{{e}^{{x}_{2}}}$.
另一方面:$\frac{-\frac{1}{{e}^{{x}_{2}}}-{e}^{{x}_{1}}}{{x}_{2}-{x}_{1}}$=${e}^{{x}_{1}}$=$\frac{1}{{e}^{{x}_{2}}}$.
可得:x1=x2+2.
又${y}_{1}={e}^{{x}_{1}}$,${y}_{2}=-\frac{1}{{e}^{{x}_{2}}}$.
∴y1y2=${e}^{{x}_{1}}×(-\frac{1}{{e}^{{x}_{2}}})$=-${e}^{{x}_{2}+2}$$•\frac{1}{{e}^{{x}_{2}}}$=-e2.
故答案為:-e2.
點評 本題考查了利用導(dǎo)數(shù)求切線的斜率、方程思想方法、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{1}{x}$ | B. | y=lg|x| | C. | y=-x2+1 | D. | y=e-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com