【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用AB兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

【答案】(Ⅰ)見解析;(Ⅱ)在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關(guān).

【解析】試題分析:(Ⅰ)根據(jù)頻率分步直方圖所給的數(shù)據(jù),寫出列聯(lián)表,填入列聯(lián)表的數(shù)據(jù);(Ⅱ)利用求觀測值的公式,代入列聯(lián)表中的數(shù)據(jù),得到觀測值,同臨界值進行比較,得到結(jié)論.

試題解析:(Ⅰ)由頻率分布直方圖可得,甲班成績優(yōu)秀、成績不優(yōu)秀的人數(shù)分別為12,38,乙班成績優(yōu)秀、成績不優(yōu)秀的人數(shù)分別為4,46.

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

12

4

16

成績不優(yōu)秀

38

46

84

總計

50

50

100

(Ⅱ)能判定,根據(jù)列聯(lián)表中數(shù)據(jù),K2的觀測值

由于4.762>3.841,所以在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),

1)求曲線處的切線方程;

2)討論函數(shù)的極小值;

3)若對任意的,總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間;

)求證:;

曲線上的所有點都落在圓內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1,討論的單調(diào)性;

2若對任意的,恒有成立求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(1,a),圓x2y2=4.

(1)若過點A的圓的切線只有一條,求a的值及切線方程;

(2)若過點A且在兩坐標軸上截距相等的直線被圓截得的弦長為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高一年級學生寒假參加社區(qū)服務的次數(shù)進行了統(tǒng)計,隨機抽取了名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務次數(shù)在的人中共抽取6人,再從這6人中選2人,求2人服務次數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.

(1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;

(2)當M點位于線段PC什么位置時,PA∥平面MBD?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1求函數(shù)的單調(diào)遞減區(qū)間;

2若關(guān)于的方程在區(qū)間上有兩個不等的根,求實數(shù)的取值范圍;

3若存在,當時,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案