【題目】如圖,PA⊥☉O所在的平面,AB是☉O的直徑,C是☉O上的一點,AE⊥PB于E,AF⊥PC于F,給出下列結(jié)論:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】因為PA⊥☉O所在的平面,BC☉O所在的平面,所以PA⊥BC,而BC⊥AC,AC∩PA=A,所以BC⊥平面PAC,故①正確;又因為AF平面PAC,所以AF⊥BC,而AF⊥PC,PC∩BC=C,所以AF⊥平面PCB,故②正確;而PB平面PCB,所以AF⊥PB,而AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,而EF平面AEF,所以EF⊥PB,故③正確;因為AF⊥平面PCB,假設AE⊥平面PBC,所以AF∥AE,顯然不成立,故④不正確;故選C.

點睛:本題考查線面垂直的判定定理和線面垂直的性質(zhì)定理,屬于中檔題.根據(jù)線面垂直的判定,可證出BC垂直于平面PAC,從而AF垂直于BC,結(jié)合已知條件得出AF垂直于平面PCB,最后可證明出PB垂直于平面AEF,從而得到EF垂直于PB,因此可知命題①②③正確,得出正確選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=sinx+ cosx的圖象向右平移φ(φ>0)個單位長度得到函數(shù)y=sinx﹣ cosx的圖象,則φ的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點O,點EAB的中點.

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點P的極坐標為(2 ). (Ⅰ)求直線l以及曲線C的極坐標方程;
(Ⅱ)設直線l與曲線C交于A,B兩點,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線a,b和平面M,N,且a⊥M,則下列說法正確的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校大一新生中的6名同學打算參加學校組織的“演講團”、“吉他協(xié)會”等五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中沒有人參加“演講團”的不同參加方法數(shù)為(
A.3600
B.1080
C.1440
D.2520

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然對數(shù)的底.
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知幾何體的三視圖(單位:cm).

(1)畫出這個幾何體的直觀圖(不要求寫畫法).

(2)求這個幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=k(x﹣1)ex+x2 . (Ⅰ)當時k=﹣ ,求函數(shù)f(x)在點(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當k≤﹣l時,求函數(shù)f(x)在[k,1]上的最小值m.

查看答案和解析>>

同步練習冊答案