在平面直角坐標(biāo)系中,已知向量
a
=(1,2),
a
-
1
2
b
=(3,1),c=(x,3),若(2
a
+
b
)∥
c
,則x=( 。
A、-2B、-4C、-3D、-1
分析:由向量的坐標(biāo)運算結(jié)合已知求得
b
的坐標(biāo),進一步得到2
a
+
b
的坐標(biāo),再由向量共線的坐標(biāo)表示列式求x的值.
解答:解:由
a
=(1,2),
a
-
1
2
b
=(3,1),得
1
2
b
=
a
-(
a
-
1
2
b
)
=(1,2)-(3,1)=(-2,1),
b
=(-4,2)
,
∴2
a
+
b
=(2,4)+(-4,2)=(-2,6),
c
=(x,3)
,
又(2
a
+
b
)∥
c

∴6x+6=0,
得x=-1.
故選:D.
點評:本題考查了平面向量的坐標(biāo)運算,考查了向量共線的條件,要特別注意垂直與平行的區(qū)別.若
a
=(a1,a2),
b
=(b1,b2),則
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0.該題是中低檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案