19.設(shè)向量$\overrightarrow a$,$\overrightarrow b$為單位向量且夾角為$\frac{π}{3}$,向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$垂直,則λ=-$\frac{5}{4}$.

分析 根據(jù)向量垂直的條件和向量的數(shù)量積公式即可求出.

解答 解:∵向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$垂直,向量$\overrightarrow a$,$\overrightarrow b$為單位向量且夾角為$\frac{π}{3}$,
∴($λ\overrightarrow a+\overrightarrow b$)($\overrightarrow a+2\overrightarrow b$)=0,
∴λ${\overrightarrow{a}}^{2}$+(2λ+1)$\overrightarrow{a}$•$\overrightarrow$+2${\overrightarrow}^{2}$=λ+(2λ+1)×$\frac{1}{2}$+2=0,
∴λ=-$\frac{5}{4}$
故答案為:-$\frac{5}{4}$

點(diǎn)評 本題考查了向量垂直的條件和向量的數(shù)量積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計(jì)算定積分${∫}_{0}^{1}$($\sqrt{1-{x}^{2}}$+3x)dx=$\frac{π}{4}+\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從等邊三角形紙片ABC上,剪下如圖所示的兩個正方形,其中BC=3+$\sqrt{3}$,則這兩個正方形的面積之和的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)由下表給出,則f(2)=3.
x123
f(x)231

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|a-1<x<2a+1},B={x|0<x<1},若A∩B=∅且A≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中假命題有( 。
①若向量$\overrightarrow{a}$,$\overrightarrow$所在的直線為異面直線,則向量$\overrightarrow{a}$,$\overrightarrow$一定不共面;
②?θ∈R,使sinθcosθ=$\frac{3}{5}$成立;
③?a∈R,都有直線ax+2y+a-2=0恒過定點(diǎn);
④命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某科技研究所對一批新研發(fā)的產(chǎn)品長度進(jìn)行檢測(單位:mm),如圖是檢測結(jié)果的頻率分布直方圖,據(jù)此估計(jì)這批產(chǎn)品的中位數(shù)為( 。
A.20B.22.5C.22.75D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)△ABC的重心為G,且|GB|+|GC|=4,若|BC|=2,則|GA|的取值范圍是$[2\sqrt{3},4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)如圖所示.在△ABC中,射影定理可表示為a=b•cosC+c•cosB.其中a,b,c分別為角A,B,C的對邊,類比上述定理.寫出對空間四面體性質(zhì)的猜想.
(2)已知在Rt△ABC中.AB⊥AC,AD⊥BC于D,有$\frac{1}{AD^2}$=$\frac{1}{AB^2}$+$\frac{1}{AC^2}$成立.那么在四面體A一BCD中,類比上述結(jié)論,你能得怎樣的猜想,說明猜想是否正確并給出理由.

查看答案和解析>>

同步練習(xí)冊答案