【題目】1)已知f(x)x33ax2bxa2x=-1時有極值0,求常數(shù)a,b的值;

2)設(shè)函數(shù)g(x)x36x5,xR. 若關(guān)于x的方程g(x)m有三個不同的實(shí)根,求實(shí)數(shù)m的取值范圍.

【答案】1a=2,b=9;(254a54.

【解析】

1)求出函數(shù)的導(dǎo)函數(shù),由時有極值0,,兩式聯(lián)立可求常數(shù)a,b的值;

2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,根據(jù)函數(shù)圖象的大致形狀可求出參數(shù)a的取值范圍.

1)由可得,

因為時有極值0,

所以

,解得

當(dāng)時,,

函數(shù)R上單調(diào)遞增,不滿足在時有極值,故舍去.

所以常數(shù)a,b的值分別為.

2,

,解得

當(dāng),當(dāng)時,,

的遞增區(qū)間是,單調(diào)遞減區(qū)間為,

當(dāng)有極大值,

當(dāng)有極小值,

由上分析可知y= f(x)圖象的大致形狀及走向,

當(dāng)時,直線與函數(shù)的圖象有3個不同交點(diǎn),

即方程g(x)m有三個不同的實(shí)根

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,很多人積極參與了疫情防控的志愿者活動.各社區(qū)志愿者服務(wù)類型有:現(xiàn)場值班值守,社區(qū)消毒,遠(yuǎn)程教育宣傳,心理咨詢(每個志愿者僅參與一類服務(wù)).參與A,B,C三個社區(qū)的志愿者服務(wù)情況如下表:

社區(qū)

社區(qū)服務(wù)總?cè)藬?shù)

服務(wù)類型

現(xiàn)場值班值守

社區(qū)消毒

遠(yuǎn)程教育宣傳

心理咨詢

A

100

30

30

20

20

B

120

40

35

20

25

C

150

50

40

30

30

1)從上表三個社區(qū)的志愿者中任取1人,求此人來自于A社區(qū),并且參與社區(qū)消毒工作的概率;

2)從上表三個社區(qū)的志愿者中各任取1人調(diào)查情況,以X表示負(fù)責(zé)現(xiàn)場值班值守的人數(shù),求X的分布列;

3)已知A社區(qū)心理咨詢滿意率為0.85,B社區(qū)心理咨詢滿意率為0.95,C社區(qū)心理咨詢滿意率為0.9,,分別表示A,B,C社區(qū)的人們對心理咨詢滿意,,,分別表示A,B,C社區(qū)的人們對心理咨詢不滿意,寫出方差,,的大小關(guān)系.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn)

1)證明:;

2)若為棱上一點(diǎn),滿足,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研團(tuán)隊研發(fā)了一款快速檢測某種疾病的試劑盒.為了解該試劑盒檢測的準(zhǔn)確性,質(zhì)檢部門從某地區(qū)(人數(shù)眾多)隨機(jī)選取了位患者和位非患者,用該試劑盒分別對他們進(jìn)行檢測,結(jié)果如下:

1)從該地區(qū)患者中隨機(jī)選取一人,對其檢測一次,估計此患者檢測結(jié)果為陽性的概率;

2)從該地區(qū)患者中隨機(jī)選取人,各檢測一次,假設(shè)每位患者的檢測結(jié)果相互獨(dú)立,以表示檢測結(jié)果為陽性的患者人數(shù),利用(1)中所得概率,求的分布列和數(shù)學(xué)期望;

3)假設(shè)該地區(qū)有萬人,患病率為.從該地區(qū)隨機(jī)選取一人,用該試劑盒對其檢測一次.若檢測結(jié)果為陽性,能否判斷此人患該疾病的概率超過?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在矩形中,在邊上,.沿折起,使平面和平面都與平面垂直,連接,如圖(2.

1)證明:;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個頂點(diǎn)都在橢圓上,其中A0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴(yán)重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進(jìn)行實(shí)驗,并將某一型號疫苗用在動物小白鼠身上進(jìn)行科研和臨床實(shí)驗,得到統(tǒng)計數(shù)據(jù)如下:

未感染病毒

感染病毒

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),,的值;

2)能否有99.9%把握認(rèn)為注射此種疫苗對預(yù)防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案