分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,由實(shí)部為0且虛部不為0求得a值,則答案可求.
解答 解:∵(1+ai)(2-i)=(a+2)+(2a-1)i是純虛數(shù),
∴$\left\{\begin{array}{l}{a+2=0}\\{2a-1≠0}\end{array}\right.$,解得a=-2.
∴a+i=-2+i,其共軛復(fù)數(shù)為-2-i.
故答案為:-2-i.
點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4af(a+1)}{a+1}$>2$\sqrt{a}$f(2$\sqrt{a}$)>(a+1)f($\frac{4a}{a+1}$) | B. | $\frac{4af(a+1)}{a+1}$<2$\sqrt{a}$f(2$\sqrt{a}$)<(a+1)f($\frac{4a}{a+1}$) | ||
C. | 2$\sqrt{a}$f(2$\sqrt{a}$)>$\frac{4af(a+1)}{a+1}$>(a+1)f($\frac{4a}{a+1}$) | D. | 2$\sqrt{a}$f(2$\sqrt{a}$)<$\frac{4af(a+1)}{a+1}$<(a+1)f($\frac{4a}{a+1}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定小于0 | B. | 一定大于0 | C. | 等于0 | D. | 正負(fù)都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosα的最小值為$\frac{{\sqrt{3}}}{3}$ | B. | cosα的最小值為$\frac{{2\sqrt{5}}}{5}$ | ||
C. | sin(2α+$\frac{π}{2}$)的最小值為$\frac{1}{2}$ | D. | sin($\frac{π}{2}$-2α)的最小值為$\frac{{\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com