20.$\frac{sin(2α+β)}{sinα}$-2cos(α+β)=2,則sin2β+2cos2α=(  )
A.2B.1C.$\sqrt{2}$D.-1

分析 將一直等式第一項(xiàng)分子轉(zhuǎn)化為α+(α+β),利用兩角和差的公式展開,通分得到sinβ=2sinα,代入sin2β+2cos2α,再由二倍角公式化簡計算.

解答 解:∵$\frac{sin(2α+β)}{sinα}$-2cos(α+β)=$\frac{sinαcos(α+β)+cosαsin(α+β)}{sinα}-2cos(α+β)$
=$cos(α+β)+\frac{cosαsin(α+β)}{sinα}-2cos(α+β)$=$\frac{cosαsin(α+β)}{sinα}-cos(α+β)$=2,
∴$\frac{sin(α+β)cosα-cos(α+β)sinα}{sinα}=2$,即sin[(α+β)-α]=sinβ=2sinα,
∴sin2β+2cos2α=4sin2α+2(1-2sin2α)=2.
故選:A.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查“拆角配角”思想的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且滿足(2b-a)•cosC=c•cosA.
(Ⅰ)求角C的大;
(Ⅱ)設(shè)y=-4$\sqrt{3}$sin2$\frac{A}{2}$+2sin(C-B),求y的最大值并判斷當(dāng)y取得最大值時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.甲、乙、丙等5人站成一排,則甲、乙均不與丙相鄰的概率$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上隨機(jī)取一個數(shù)x,則使tanx-1>0的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)實(shí)數(shù)x,y滿足(x-2)2+y2=3,那么$\sqrt{{x}^{2}+{y}^{2}}$的最大值是( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.1+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)i(1+i)2(i為虛數(shù)單位)的實(shí)部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下面有四個命題:
①三個平面兩兩互相垂直,則它們的交線也兩兩互相垂直;
②三條共點(diǎn)的直線兩兩互相垂直,分別由每兩條直線所確定的平面也兩兩互相垂直;
③分別與兩條互相垂直相交的直線垂直的兩個平面互相垂直;
④分別經(jīng)過兩條互相垂直的直線的兩個平面互相垂直.
其中正確的命題序號是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)曲線y=$\sqrt{x}$有一點(diǎn)P(x1,y1),與曲線切于點(diǎn)P的切線為m,若直線n過P且與m垂直,則稱n為曲線在點(diǎn)P處的法線,設(shè)n交x軸于點(diǎn)Q,又作PR⊥x軸于R,則RQ的長為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{x-2}{x+1}$,其中 a>1:
(1)證明:函數(shù)f(x)在(-1,∞)上為增函數(shù);
(2)證明:不存在負(fù)實(shí)數(shù)x0使得f(x0)=0.

查看答案和解析>>

同步練習(xí)冊答案