A. | 2 | B. | 1 | C. | $\sqrt{2}$ | D. | -1 |
分析 將一直等式第一項(xiàng)分子轉(zhuǎn)化為α+(α+β),利用兩角和差的公式展開,通分得到sinβ=2sinα,代入sin2β+2cos2α,再由二倍角公式化簡計算.
解答 解:∵$\frac{sin(2α+β)}{sinα}$-2cos(α+β)=$\frac{sinαcos(α+β)+cosαsin(α+β)}{sinα}-2cos(α+β)$
=$cos(α+β)+\frac{cosαsin(α+β)}{sinα}-2cos(α+β)$=$\frac{cosαsin(α+β)}{sinα}-cos(α+β)$=2,
∴$\frac{sin(α+β)cosα-cos(α+β)sinα}{sinα}=2$,即sin[(α+β)-α]=sinβ=2sinα,
∴sin2β+2cos2α=4sin2α+2(1-2sin2α)=2.
故選:A.
點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查“拆角配角”思想的應(yīng)用,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{3}$ | C. | 1+$\sqrt{3}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com