15.已知點A、B、C都在半徑為$\sqrt{2}$的球面上,且AC⊥BC,∠ABC=30°,球心O到平面ABC的距離為1,點M是線段BC的中點,過點M作球O的截面,則截面面積的最小值為( 。
A.$\frac{\sqrt{3}π}{4}$B.$\frac{3π}{4}$C.$\sqrt{3}π$D.

分析 設(shè)△ABC的中心為O1,連結(jié)O1A.根據(jù)球的截面圓性質(zhì)、通過勾股定理,而經(jīng)過點M的球O的截面,當(dāng)截面與OM垂直時截面圓的半徑最小,相應(yīng)地截面圓的面積有最小值,由此算出截面圓半徑的最小值,從而可得截面面積的最小值.

解答 解:∵點A、B、C都在半徑為$\sqrt{2}$的球面上,且AC⊥BC,∠ABC=30°,△ABC是直角三角形,AB的中點為O1
∴O1O⊥平面ABC,∵球的半徑R=$\sqrt{2}$,球心O到平面ABC的距離為1,得O1O=1,
∴Rt△O1OA中,O1A=$\sqrt{2-1}$=1.
又∵M為BC的中點,△ABC是直角三角形,∠ABC=30°,∴BC=$\sqrt{3}$,BM=$\frac{\sqrt{3}}{2}$.
∵過E作球O的截面,當(dāng)截面與OM垂直時,截面圓的半徑最小,
∴當(dāng)截面與OE垂直時,截面圓的面積有最小值.
此時可得截面面積為S=πr2=$\frac{3π}{4}$.
故選:C.

點評 本題已知球的內(nèi)接正三角形與球心的距離,求經(jīng)過正三角形中點的最小截面圓的面積.著重考查了勾股定理、球的截面圓性質(zhì)與正三角形的性質(zhì)等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:填空題

設(shè)函數(shù),其中,若存在使得成立,則實數(shù)的值是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0),定點M(2,0),以O(shè)為圓心,拋物線C的準線與以|OM|為半徑的圓所交的弦長為2$\sqrt{3}$.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若直線y=-x+m(m∈R)與拋物線交于不同的兩點A、B,則拋物線上是否存在定點P(x0,y0),使得直線PA,PB關(guān)于x=x0對稱.若存在,求出P點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)含有10個元素的集合的全部子集數(shù)為S,其中由3個元素組成的子集數(shù)為T,則$\frac{T}{S}$的值為( 。
A.$\frac{20}{128}$B.$\frac{15}{128}$C.$\frac{16}{128}$D.$\frac{21}{128}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知動圓經(jīng)過定點D(1,0),且與直線x=-1相切,設(shè)動圓圓心E的軌跡為曲線C
(Ⅰ)求取曲線C的方程;
(Ⅱ)設(shè)過點P(1,2)的直線l1,l2分別與曲線C交于A,B兩點,直線l1,l2的斜率存在,且傾斜角互補,證明:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F是拋物線y2=4x的焦點,P是拋物線上一點,延長PF交拋物線于點Q,若|PF|=5,則|QF|=( 。
A.$\frac{9}{8}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a(x-1)2+lnx+1,g(x)=f(x)-x,其中a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時,若y=f(x)圖象上的點都在$\left\{\begin{array}{l}x≥1\\ y≤x\end{array}\right.$所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線y2=2px(p>0)與雙曲線mx2+ny2=1(mn<0)的一條漸近線的一個公共點M的坐標為(${\sqrt{p}$,y0),若點M到拋物線的焦點距離為4,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$或3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.離心率為2的雙曲線C與橢圓$\frac{{x}^{2}}{5}$+y2=1有相同的焦點,則雙曲線C的標準方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{y}^{2}}{3}$-x2=1C.$\frac{{x}^{2}}{3}$-y2=1D.y2-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

同步練習(xí)冊答案