不等式(
1
4
x>(
1
2
x的解集是
 
考點:指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:直接利用指數(shù)不等式的解法,指數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為二次不等式,然后求解即可.
解答: 解:不等式(
1
4
x>(
1
2
x轉(zhuǎn)化為:(
1
2
2x>(
1
2
x
由y=(
1
2
x是減函數(shù),解得2x<x,
解得x∈(-∞,0).
故答案為:(-∞,0).
點評:本題考查指數(shù)不等式的解法,指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx+acosωx(ω>0)的最小正周期為2π.
(1)求ω的值;
(2)已知直線x=-
π
4
是函數(shù)f(x)圖象的一條對稱軸,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log2.56.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=2,AD=6,E、F為AD的兩個三等分點,AC和BF交于點G,△BEG的外接圓為圓H.
(1)求證:EG⊥BF;
(2)若圓H與圓C無公共點,求圓C半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x-y+1≥0
x+y≥0
x≤3
則z=x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
3
2
,且內(nèi)切于圓x2+y2=9.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M,N兩點,與y軸交于點R,若
RM
MQ
RN
NQ
,試判斷λ+μ是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,過F的直線與橢圓交于A,B兩點.
(1)若點A為橢圓的上頂點,滿足AF=2FB,且橢圓的右準(zhǔn)線方程為x=3
3
,求橢圓的標(biāo)準(zhǔn)方程;
(2)若點A,B在橢圓的右準(zhǔn)線上的射影分別為A1,B1(如圖所示),求證:∠A1FB1為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點
(Ⅰ)求證:直線BD1⊥AC;
(Ⅱ)求異面直線BD1與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中錯誤的是( 。
A、已知隨機變量X~N(2,9)P(X>c+1)=P(X<c+1),則c=1
B、兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1
C、在回歸直線方程
y
=0.2x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量
y
平均增加0.2個單位
D、對分類變量X與Y的隨機變量K2的觀測值k,k越小,“X與Y有關(guān)系”的把握程度越大

查看答案和解析>>

同步練習(xí)冊答案