3.在等比數(shù)列{an}中,前n項和Sn=2n+a(n∈N*),則a=-1.

分析 由等比數(shù)列的前n項和求出首項,再求出n≥2時的通項公式,代入a1得答案.

解答 解:在等比數(shù)列{an}中,由前n項和Sn=2n+a,
得a1=2+a,
又當n≥2時,an=Sn-Sn-1=2n+a-2n-1-a=2n-1
∴2+a=2°=1,即a=-1.
故答案為:-1.

點評 本題考查等比數(shù)列的通項公式,考查了等比數(shù)列的前n項和,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是( 。
A.?x∈(0,+∞),lnx≠x-2B.?x∉(0,+∞),lnx=x-2
C.?x0∈(0,+∞),使lnx0≠x0-2D.?x0∉(0,+∞),lnx0=x0-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設數(shù)列{an}的前n項積為Tn,且Tn=2-2an(n∈N*),則a2016=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等差數(shù)列{an}中,Sn為其前n項和,a2+a8=14,S5=25.
(1)求{an}的通項公式;
(2)設bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.無窮等比數(shù)列{an}的通項公式為an=3×(-$\frac{1}{2}$)n-1,則其所有項的和為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設首項為2,公比為q(q>0)的等比數(shù)列的前n項和為Sn,且Tn=a2+a4+a6+…+a2n,
(1)求Sn
(2)求$\lim_{n→∞}\frac{S_n}{T_n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-2,3),求下列向量的坐標:
(1)$\overrightarrow{a}$+$\overrightarrow$;
(2)-3$\overrightarrow{a}$;
(3)3$\overrightarrow{a}$-2$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=x2-ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2-ax+1>0的解集;
(2)當b=3-a時,對任意的x∈(-1,0]都有f(x)≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x-1|(x≤1)}\\{3^x(x>1)}\end{array}\right.$,若f(x)=3,則x=-2.

查看答案和解析>>

同步練習冊答案