15.已知函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若對(duì)于任意的x∈R,f(x)>g(x)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,2$\sqrt{2}$)B.(-∞,2$\sqrt{2}$]C.(-∞,3)D.(-∞,3]

分析 根據(jù)題意,得出f(x)>g(x)恒成立時(shí)2x2+3>a$\sqrt{{x}^{2}+1}$對(duì)任意的實(shí)數(shù)x恒成立,轉(zhuǎn)化為a<$\frac{{2x}^{2}+3}{\sqrt{{x}^{2}+1}}$對(duì)任意的實(shí)數(shù)x恒成立;
設(shè)a(x)=$\frac{{2x}^{2}+3}{\sqrt{{x}^{2}+1}}$,利用換元法求出a(x)的最小值,從而求出a(x)的最小值.

解答 解:∵函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,
當(dāng)對(duì)于任意的x∈R,f(x)>g(x)恒成立時(shí),
即2x2+3>a$\sqrt{{x}^{2}+1}$對(duì)任意的實(shí)數(shù)x恒成立,
即不等式a<$\frac{{2x}^{2}+3}{\sqrt{{x}^{2}+1}}$對(duì)任意的實(shí)數(shù)x恒成立;
設(shè)h(x)=$\frac{{2x}^{2}+3}{\sqrt{{x}^{2}+1}}$,
則h(x)=$\frac{{2x}^{2}+2}{\sqrt{{x}^{2}+1}}$+$\frac{1}{\sqrt{{x}^{2}+1}}$=2$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$,
設(shè)t=$\sqrt{{x}^{2}+1}$≥1,∴a(t)=2t+$\frac{1}{t}$,∴a′(t)=2-$\frac{1}{{t}^{2}}$>0,
∴a(t)在[1,+∞)上是單調(diào)增函數(shù),
∴a(t)min=g(1)=2+1=3;
∴a(x)的最小值為3,
∴a的取值范圍是(-∞,3).
故選:C.

點(diǎn)評(píng) 本題考查了不等式的恒成立問題,也考查了函數(shù)的最值問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知?jiǎng)狱c(diǎn)P(x,y)在過點(diǎn)(-$\frac{3}{2}$,-2)且與圓M:(x-1)2+(y+2)2=5相切的兩條直線和x-y+1=0所圍成的區(qū)域內(nèi),則z=|x+2y-3|的最小值為( 。
A.$\frac{\sqrt{5}}{5}$B.1C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x∈(0,1)時(shí)f(x)>0,且x,y∈(0,+∞)時(shí)總有f(x•y)=f(x)+f(y)
(1)求證:f($\frac{x}{y}$)=f(x)-f(y);
(2)證明:函數(shù)f(x)在定義域(0,+∞)上為減函數(shù);
(3)若f(3)=1,且f(a)<f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{1}{(1+i)i}$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足:a1=2,(4an+1-5)(4an-1)=-3,則$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+$\frac{1}{{a}_{3}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{3}{2}$(3n-1)-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.春節(jié)期間,小王用私家車送4位朋友到三個(gè)旅游點(diǎn)去游玩,每位朋友在每一個(gè)景點(diǎn)下車的概率為$\frac{1}{3}$,用ξ表示4位朋友在第三個(gè)景點(diǎn)下車的人數(shù),求:
(1)離散型隨機(jī)變量ξ的概率分布;
(2)離散型隨機(jī)變量ξ的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i為虛數(shù)單位,復(fù)數(shù)z=a+i(a<0),且|z|=$\sqrt{10}$,則復(fù)數(shù)z的實(shí)部為(  )
A.3B.-3C.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知區(qū)域D:$\left\{\begin{array}{l}{y≥2}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,則x2+y2的最小值是( 。
A.5B.4C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=sinx+acosx的圖象的一條對(duì)稱軸方程為x=$\frac{π}{4}$,則實(shí)數(shù)a的一個(gè)可能的取值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案