7.已知i為虛數(shù)單位,復(fù)數(shù)z=a+i(a<0),且|z|=$\sqrt{10}$,則復(fù)數(shù)z的實(shí)部為( 。
A.3B.-3C.-1D.i

分析 利用復(fù)數(shù)模的公式得到關(guān)于a的方程,求解方程得答案.

解答 解:∵z=a+i(a<0),且|z|=$\sqrt{10}$,
∴$\sqrt{{a}^{2}+1}=\sqrt{10}$,即a2+1=10,
則a2=9,
∴a=-3.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)模的求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.P(B|A)<P(AB)B.P(B|A)=$\frac{P(B)}{P(A)}$是可能的
C.0<P(B|A)<1D.P(A|A)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,△ABC中,AB=4,BC=2,∠ABC=∠D=60°,△ADC是銳角三角形,DA+DC的取值范圍為$(6,4\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若對于任意的x∈R,f(x)>g(x)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2$\sqrt{2}$)B.(-∞,2$\sqrt{2}$]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-4ln(x+1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在不等式組$\left\{\begin{array}{l}0≤x≤2\\ 0≤y≤2\end{array}\right.$表示的平面區(qū)域內(nèi)任取一個(gè)點(diǎn)P(x,y),使得x+y≤1的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.甲、乙、丙三人將獨(dú)立參加某項(xiàng)體育達(dá)標(biāo)活動(dòng),根據(jù)平時(shí)訓(xùn)練的經(jīng)驗(yàn),甲、乙、丙三人能達(dá)標(biāo)的概率分別為$\frac{3}{4}$、$\frac{2}{3}$、$\frac{3}{5}$,則三人中有人達(dá)標(biāo)但沒有完全達(dá)標(biāo)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.?dāng)?shù)列{an}滿足:a3=$\frac{1}{5}$,an-an+1=2an•an+1,則數(shù)列{an•an+1}前10項(xiàng)的和為$\frac{10}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=loga(x-b)的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案