【題目】學習了余弦定理后,老師布置了一個課外任務,讓同學們自己制作一些直角三角形、銳角三角形或鈍角三角形的模型,現(xiàn)在李明和王強同學已經(jīng)有了兩根長度分別為和的鐵絲.
(1)如果他們希望能夠制作一個直角三角形,那么他們需要的第三根鐵絲的長度應該是多少?
(2)如果他們希望能夠制作一個鈍角三角形,那么他們需要的第三根鐵絲的長度應該在什么范圍?制作一個銳角三角形呢?
【答案】(1)或;(2)見解析.
【解析】
(1)分兩種情況討論,斜邊為長度為的鐵絲或第三根鐵絲,利用勾股定理即可求出結果;
(2)若三角形為鈍角三角形,分兩種情況討論,最長邊為長度為的鐵絲或第三根鐵絲,利用最大角的余弦值為負數(shù),結合余弦定理以及三角形三邊關系可求得結果,同理可得出當三角形為銳角三角形時第三邊長度的取值范圍.
(1)制作一個直角三角形,設第三根鐵絲的長度為.
①若長度為的鐵絲為斜邊,則;
②第三根鐵絲為斜邊,則.
綜上所述,所求第三邊的長度為或;
(2)制作一個鈍角三角形,設第三根鐵絲的長度為,設鈍角三角形的最大角為.
①若最長邊為的鐵絲,則,解得,
又,,即;
②若最長邊為的鐵絲,則,解得,
由,此時.
綜上所述,當三角形為鈍角三角形時,第三邊的取值范圍是.
同理可知,制作一個銳角三角形時,第三邊的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】在一個盒子中,放有標號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標號分別為x、y,設O為坐標原點,點P的坐標為記.
(1)求隨機變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應交付保險費、養(yǎng)路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.
(I)設該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;
(3)求數(shù)列前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓C的標準方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O:和點,由圓O外一點P向圓O引切線,Q為切點,且有 .
(1)求點P的軌跡方程,并說明點P的軌跡是什么樣的幾何圖形?
(2)求的最小值;
(3)以P為圓心作圓,使它與圓O有公共點,試在其中求出半徑最小的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com