8.已知直線l經(jīng)過點(diǎn)A(2,-3),它的傾斜角與直線y=$\sqrt{3}$x傾斜角的夾角為$\frac{π}{6}$,求直線l的方程.

分析 求出直線l的傾斜角,代入直線方程即可.

解答 解:直線y=$\sqrt{3}$x的傾斜角是:$\frac{π}{3}$,
∴直線l的傾斜角是$\frac{π}{2}$或$\frac{π}{6}$,
∴傾斜角是$\frac{π}{2}$時(shí):
直線l的方程是:x=2
傾斜角是$\frac{π}{6}$時(shí),l的斜率是$\frac{\sqrt{3}}{3}$,
∴直線l的方程是:y+3=$\frac{\sqrt{3}}{3}$(x-2),
即:$\sqrt{3}$x-3y-2$\sqrt{3}$-9=0,
故直線l的方程是x=2或$\sqrt{3}$x-3y-2$\sqrt{3}$-9=0.

點(diǎn)評(píng) 本題考查了直線的斜率,考查直線方程問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$),已知y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸的距離為2,并過點(diǎn)(1,2).
(1)求φ;
(2)求f(1)+f(2)+f(3)+…+(2015)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵(lì)市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運(yùn)力,有效利用公共交通資源合理調(diào)度,在某地鐵站點(diǎn)進(jìn)行試點(diǎn)調(diào)研市民對(duì)候車時(shí)間的等待時(shí)間(候車時(shí)間不能超過20分鐘),以便合理調(diào)度減少候車時(shí)間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進(jìn)行調(diào)查分析,得到如下統(tǒng)計(jì)表和各時(shí)間段人數(shù)頻率分布直方圖:
分組等待時(shí)間(分鐘)人數(shù)
第一組[0,5)10
第二組[5,10)a
第三組[10,15)30
第四組[15,20)10
(Ⅰ)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個(gè)人中隨機(jī)抽取3人至少一人來自第二組的概率;
(Ⅱ)從這10人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)這3個(gè)人共來自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入a=$\sqrt{3}$,b=1,那么輸出的b值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(1)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;
(2)令bn=$\frac{{S{\;}_n}}{n+k}$,若{bn}是等差數(shù)列,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對(duì)于函數(shù)f(x)=sin2x,下列說法錯(cuò)誤的是①③④.
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是遞增的;
②f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
③f(x)的最小正周期為2π;
④f(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\frac{{x}^{2}+ax-2}{{x}^{2}-x+1}$的值域[-2,2],則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}^{2}}{t{a}_{n}+2}$
(Ⅰ)若t=0,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若t=1,求證:$\frac{2}{3}≤\frac{2{a}_{1}}{{a}_{1}+2}+\frac{4{a}_{2}}{{a}_{2}+2}+\frac{6{a}_{3}}{{a}_{3}+2}+…+\frac{2n{a}_{n}}{{a}_{n}+2}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,m),且$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m的值為( 。
A.1B.-4C.-1D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案