3.已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(1)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;
(2)令bn=$\frac{{S{\;}_n}}{n+k}$,若{bn}是等差數(shù)列,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和Tn

分析 (1)由等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式列出方程,聯(lián)立方程求出d、a1,由等差數(shù)列的通項(xiàng)公式求出an,由等差數(shù)列的前n項(xiàng)和公式求出Sn;
(2)由(1)和條件化簡(jiǎn)bn,由等差數(shù)列的性質(zhì)列出方程求出k的值,代入求出bn和$\frac{1}{_{n}_{n+1}}$,利用裂項(xiàng)相消法求出Tn

解答 解:(1)∵a1+a4=14,∴2a1+3d=14,①
∵a1,a2,a7成等比數(shù)列,∴${{a}_{2}}^{2}={a}_{1}{a}_{7}$,
即${{(a}_{1}+d)}^{2}={a}_{1}{(a}_{1}+6d)$,②
由①②得d2=4a1d,
∵d≠0,∴d=4a1,代入①解得d=4、a1=1,
∴an=a1+(n-1)d=4n-3,Sn=$\frac{n(1+4n-3)}{2}$=2n2-n;
(2)由(1)知${b_n}=\frac{{2{n^2}-n}}{n+k}$,
∵{bn}是為等差數(shù)列,∴2b2=b1+b3,即$2•\frac{6}{2+k}$=$\frac{1}{1+k}+\frac{15}{3+k}$,
解得$k=-\frac{1}{2}$,或k=0(8分),
①當(dāng)$k=-\frac{1}{2}$時(shí),即bn=2n,則$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$
∴${T}_{n}=\frac{1}{4}(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$
=$\frac{1}{4}(1-\frac{1}{n+1})=\frac{n}{4(n+1)}$(10分)
②當(dāng)k=0時(shí),bn=2n-1,
則$\frac{1}{_{n}_{n+1}}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${T}_{n}=\frac{1}{2}(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
綜上可得,Tn=$\frac{n}{4(n+1)}$或$\frac{n}{2n+1}$.(12分)

點(diǎn)評(píng) 本題主要考查等差數(shù)列通項(xiàng)公式和前n項(xiàng)和的公式,等比中項(xiàng)的性質(zhì),數(shù)列求和的方法:裂項(xiàng)相消法,考查方程思想,化簡(jiǎn)、計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若對(duì)任意實(shí)數(shù)x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3成立,則a0+a2=( 。
A.1B.14C.28D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.南北朝時(shí)期的數(shù)學(xué)古籍《張邱建算經(jīng)》有如下一道題:“今有十等人,每等一人,宮賜金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中間三人未到者,亦依等次更給.問:每等人比下等人多得幾斤?”(  )
A.$\frac{4}{39}$B.$\frac{7}{78}$C.$\frac{7}{76}$D.$\frac{5}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={x|(x-4)(x+2)>0},B={x|-3≤x<1},則A∩B等于( 。
A.[-3,1)B.[-3,-2)C.[-3,-1]D.[-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,A是橢圓C的左頂點(diǎn),且滿足|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為k的直線交橢圓C于點(diǎn)M,N兩點(diǎn)(異于A點(diǎn)),且滿足AM⊥AN,問直線MN是否恒過定點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l經(jīng)過點(diǎn)A(2,-3),它的傾斜角與直線y=$\sqrt{3}$x傾斜角的夾角為$\frac{π}{6}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.經(jīng)過兩點(diǎn)A(2,1),B(1,m)的直線的傾斜角為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2016年1月,微信宣布:微信朋友圈除夕前后10天的所有廣告收入,均將變?yōu)槊赓M(fèi)紅包派送至全國(guó)網(wǎng)民的口袋,金額至少達(dá)到9位數(shù),由此引發(fā)微友們?cè)谌χ袚尲t包大戰(zhàn).某商業(yè)調(diào)查公司對(duì)此進(jìn)行了問卷調(diào)查,其中男性500人,女性400人,為了了解性別對(duì)“搶紅包”的喜愛程度的影響,采用分層抽樣方法從中抽取了45人的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男性
等級(jí)喜歡一般不喜歡
頻數(shù)15x5
表2:女性
等級(jí)喜歡一般不喜歡
頻數(shù)153y
(Ⅰ)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“喜歡搶紅包與性別有關(guān)”.
男性女性總計(jì)
喜歡
非喜歡
總計(jì)
(Ⅱ)從表一“一般”與表二“不喜歡”的人中隨機(jī)選取2人進(jìn)行交談,求所選2人中至少有一人“不喜歡”的概率.
參考數(shù)據(jù)與公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P( K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線過點(diǎn)P(3,1),且與以A(4,3),B(5,2)為端點(diǎn)的線段AB相交,則直線l的斜率的取值范圍為[$\frac{1}{2}$,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案