20.已知向量$\overrightarrow a=(1,x),\overrightarrow b=(-1,x)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$.則$|{\overrightarrow a}|$=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

分析 利用兩個向量垂直的性質(zhì),兩個向量的數(shù)量積公式,求得x的值,可得$|{\overrightarrow a}|$的值.

解答 解:∵向量$\overrightarrow a=(1,x),\overrightarrow b=(-1,x)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$,
∴(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$=2$\overrightarrow{a}•\overrightarrow$-${\overrightarrow}^{2}$=2(-1+x2)-(1+x2)=-3+x2=0,
∴x=±$\sqrt{3}$,則$|{\overrightarrow a}|$=$\sqrt{{1+x}^{2}}$=2,
故選:C.

點評 本題主要考查兩個向量垂直的性質(zhì),兩個向量的數(shù)量積公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(1+2x)7的展開式的第5項的系數(shù)560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線ax+by-1=0在y軸上的截距為-1,且它的傾斜角是直線$\sqrt{3}$x-y-$\sqrt{3}$=0的傾斜角的2倍,則a,b的值分別為( 。
A.$\sqrt{3}$,1B.$\sqrt{3}$,-1C.-$\sqrt{3}$,1D.-$\sqrt{3}$,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}中,a2+a4=12,a5=10,則與圓x2+y2-2y=0相交所得的弦長為a1,且斜率為a3的直線方程是( 。
A.6x-y-l=0B.6x+y-l=0C.6x-y+l=0D.6x+y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=1+2$\sqrt{3}$sinxcosx+2cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,若f(A)=3,b+c=$\sqrt{3}$a,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)Z=(3-i)(1+2i),則$\overline Z$=5-5i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sin$\frac{θ}{2}$=$\frac{3}{5}$,cos$\frac{θ}{2}$=-$\frac{4}{5}$,則點P(cosθ,sinθ)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x,y為正實數(shù),滿足2x+y+6=xy,則xy的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知(1-2x)2013=a0+a1x+a2x2+…+a2013x2013,則a1+a2+…+a2013=-2.

查看答案和解析>>

同步練習(xí)冊答案