【題目】近年電子商務蓬勃發(fā)展, 年某網(wǎng)購平臺“雙”一天的銷售業(yè)績高達億元人民幣,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為,對快遞的滿意率為,其中對商品和快遞都滿意的交易為次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認為“網(wǎng)購者對商品滿意與對快遞滿意之間有關系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

對商品不滿意

合計

(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的次購物中,設對商品和快遞都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.

附: (其中為樣本容量)

【答案】(1)答案見解析;(2)答案見解析.

【解析】試題分析:(1)由題意得n=200,再由滿意率可求得a,b,c,d填入列聯(lián)表,算卡方與數(shù)據(jù)對比。(2)由二項分布寫出布列及期望。

試題解析;(1)列聯(lián)表:

對快遞滿意

對快遞不滿意

合計

對商品滿意

對商品不滿意

合計

,

由于的把握認為“網(wǎng)購者對商品滿意與對快遞滿意之間有關系”.

(2)每次購物時,對商品和快遞都滿意的概率為,且的取值可以是 , , .

;

; .

的分布列為:

所以 .

或者:由于,則.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某運動員從A市出發(fā)沿海岸一條筆直公路以每小時15km的速度向東進行長跑訓練,長跑開始時,在A市南偏東方向距A75km,且與海岸距離為45km的海上B處有一艘劃艇與運動員同時出發(fā),要追上這位運動員.

1)劃艇至少以多大的速度行駛才能追上這位運動員?

2)求劃艇以最小速度行駛時的行駛方向與所成的角.

3)若劃艇每小時最快行駛11.25km,劃艇全速行駛,應沿何種路線行駛才能盡快追上這名運動員,最快需多長時間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經(jīng)過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線.

(1)當時,求曲線在處的切線方程;

2)過點作曲線的切線,若所有切線的斜率之和為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,,

(I)求,的值,由此猜想數(shù)列的通項公式:

(Ⅱ)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)已知為平面內的兩個定點,過點的直線與橢圓交于 兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用五點法畫函數(shù)f(x)=Asin(ωx+)(A>0ω>0,||<)在某一個周期內的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+

0

π

2π

x

Asin(ωx+)

0

5

-5

0

1)請將上表數(shù)據(jù)補充完整,并求出函數(shù)f(x)的解析式;

2)將y=f(x)的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象.若關于x的方程g(x)-m=0在區(qū)間[0,]上有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體,,,均垂直于平面ABC,,,

1)證明:平面;

2)求平面與平面所成的銳角的余弦值.

查看答案和解析>>

同步練習冊答案