【題目】已知橢圓的左,右焦點(diǎn)分別為,直線與橢圓相交于兩點(diǎn);當(dāng)直線經(jīng)過(guò)橢圓的下頂點(diǎn)和右焦點(diǎn)時(shí),的周長(zhǎng)為,且與橢圓的另一個(gè)交點(diǎn)的橫坐標(biāo)為
(1)求橢圓的方程;
(2)點(diǎn)為內(nèi)一點(diǎn),為坐標(biāo)原點(diǎn),滿(mǎn)足,若點(diǎn)恰好在圓上,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或
【解析】
(1)由橢圓的定義可知,焦點(diǎn)三角形的周長(zhǎng)為,從而求出.寫(xiě)出直線的方程,與橢圓方程聯(lián)立,根據(jù)交點(diǎn)橫坐標(biāo)為,求出和,從而寫(xiě)出橢圓的方程;
(2)設(shè)出P、Q兩點(diǎn)坐標(biāo),由可知點(diǎn)為的重心,根據(jù)重心坐標(biāo)公式可將點(diǎn)用P、Q兩點(diǎn)坐標(biāo)來(lái)表示.由點(diǎn)在圓O上,知點(diǎn)M的坐標(biāo)滿(mǎn)足圓O的方程,得式.為直線l與橢圓的兩個(gè)交點(diǎn),用韋達(dá)定理表示,將其代入方程,再利用求得的范圍,最終求出實(shí)數(shù)的取值范圍.
解:(1)由題意知.
,
直線的方程為
∵直線與橢圓的另一個(gè)交點(diǎn)的橫坐標(biāo)為
解得或(舍去)
,
∴橢圓的方程為
(2)設(shè)
.
∴點(diǎn)為的重心,
∵點(diǎn)在圓上,
由得
,
代入方程,得
,
即
由得
解得.
或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有個(gè)均勻的紅球和個(gè)均勻的白球,每個(gè)球被取到的概率相等,已知從盒子里一次隨機(jī)取出1個(gè)球,取到的球是紅球的概率為,從盒子里一次隨機(jī)取出2個(gè)球,取到的球至少有1個(gè)是白球的概率為.
(1)求,的值;
(2)若一次從盒子里隨機(jī)取出3個(gè)球,求取到的白球個(gè)數(shù)不小于紅球個(gè)數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,AC⊥BC,且,AC=BC=2,D,E分別為AB,PB中點(diǎn),PD⊥平面ABC,PD=3.
(1)求直線CE與直線PA夾角的余弦值;
(2)求直線PC與平面DEC夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過(guò)38的病人特設(shè)發(fā)熱門(mén)診,該門(mén)診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
晝夜溫差() | 8 | 10 | 13 | 12 | 7 |
就診人數(shù)(人) | 18 | 25 | 28 | 27 | 17 |
(1)求的相關(guān)系數(shù),并說(shuō)明晝夜溫差()與就診人數(shù)具有很強(qiáng)的線性相關(guān)關(guān)系.
(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測(cè)晝夜溫差為9時(shí)的就診人數(shù).
附:樣本的相關(guān)系數(shù)為,當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系.
回歸直線方程為,其中,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線.
(1)當(dāng)時(shí),直線被圓截得的弦長(zhǎng)為__________;
(2)若在圓上存在一點(diǎn),在直線上存在一點(diǎn),使得的中點(diǎn)恰為坐標(biāo)原點(diǎn),則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在斜三棱柱中,是邊長(zhǎng)為2的正三角形,側(cè)面為菱形,且,,點(diǎn)O為AC中點(diǎn).
(1)求證:平面ABC;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:其中正確命題數(shù)是( )
A.在線性回歸模型中,相關(guān)系數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率,越接近于1,表示回歸效果越好
B.兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
C.在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位
D.對(duì)分類(lèi)變量與,它們的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),觀測(cè)值越小,“與有關(guān)系”的把握程度越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在點(diǎn)處的切線方程為,求(1)實(shí)數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的動(dòng)弦過(guò)點(diǎn),過(guò)點(diǎn)且垂直于弦的直線交拋物線的準(zhǔn)線于點(diǎn).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com