6.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sinα
(2)求$\frac{sin2α+cos2α+1}{1+tanα}$的值.

分析 (1)利用任意角的三角函數(shù)的定義,求得sinα的值.
(2)利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)由三角函數(shù)定義得 x=-$\frac{3}{5}$,y=$\frac{4}{5}$,r=|OP|=1,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=-$\frac{3}{5}$.
(2)原式=$\frac{2sinαcosα+{2cos}^{2}α-1+1}{1+\frac{sinα}{cosα}}$=$\frac{(2sinαcosα+{2cos}^{2}α)•cosα}{cosα+sinα}$=2cos2α=$\frac{18}{25}$.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標(biāo)系中,點(diǎn)(1,0)與點(diǎn)(2,π)的距離為( 。
A.1B.3C.$\sqrt{1+{π^2}}$D.$\sqrt{9+{π^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.曲線y=-$\frac{1}{x}$在(1,-1)處的切線的斜率為(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線方程為x2-y2=4,過點(diǎn)A(3,1)作直線l與該雙曲線交于M,N兩點(diǎn),若點(diǎn)A恰好為MN中點(diǎn),則直線l的方程為( 。
A.y=3x-8B.y=-3x+8C.y=3x-10D.y=-3x+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知偶函數(shù)f(x)在[-1,0]上為單調(diào)增函數(shù),則( 。
A.f(sin$\frac{π}{8}$)<f(cos$\frac{π}{8}$)B.f(sin1)>f(cos1)
C.f(sin$\frac{π}{12}$)<f(sin$\frac{5π}{12}$)D.f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足:|${\overrightarrow a}$|=|${\overrightarrow b}$|=1,$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{2}$,<$\overrightarrow a$-$\overrightarrow c$,$\overrightarrow b$-$\overrightarrow c$>=60°,則|${\overrightarrow c}$|的最大值為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=log2(x+1)+a的反函數(shù)的圖象經(jīng)過點(diǎn)(4,1),則實(shí)數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知tanα=3,則$\frac{2sinα-cosα}{4sinα+3cosα}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項(xiàng)和,若S8=4S4,則a9等于( 。
A.$\frac{17}{2}$B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

同步練習(xí)冊答案