5.已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項(xiàng)和,若S8=4S4,則a9等于( 。
A.$\frac{17}{2}$B.$\frac{19}{2}$C.9D.10

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:∵S8=4S4,d=1,
∴8a1+$\frac{8×7}{2}$×1=4×$(4{a}_{1}+\frac{4×3}{2}×1)$,
解得a1=$\frac{1}{2}$.
則a9=$\frac{1}{2}+8×1$=$\frac{17}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sinα
(2)求$\frac{sin2α+cos2α+1}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某班早晨7:30開(kāi)始上早讀課,該班學(xué)生小陳和小李在早上7:10至7:30之間到班,且兩人在此時(shí)間段的任何時(shí)刻到班是等可能的.
(1)在平面直角坐標(biāo)系中畫(huà)出兩人到班的所有可能結(jié)果表示的區(qū)域;
(2)求小陳比小李至少晚5分鐘到班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足5x+12y=60,則$\sqrt{{x^2}+{y^2}}$的最小值等于$\frac{60}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=-x2+2x在[0,8]的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)F是橢圓$\frac{x^2}{9}$+$\frac{y^2}{8}$=1的右焦點(diǎn),點(diǎn)A(1,2),M是橢圓上一動(dòng)點(diǎn),則MA+MF取值范圍為(6-2$\sqrt{2}$,6+2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f:A→B為從集合A到集合B的一個(gè)映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y),若A中元素(1,a)的象是(b,4),則實(shí)數(shù)a,b的值分別為(  )
A.-2,3B.-2,-3C.-3,-2D.1,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.為了考察某校各班參加課外書(shū)法小組的人數(shù),從全校隨機(jī)抽取5個(gè)班級(jí),把每個(gè)班級(jí)參加該小組的人數(shù)作為樣本數(shù)據(jù).已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互不相同,則樣本數(shù)據(jù)中的最大值為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、F2,過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若在△F1PF2中,∠F1PF2=60°,則橢圓的離心率是(  )
A.$\frac{\sqrt{3}}{3}$B.2-$\sqrt{2}$C.2-$\sqrt{3}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案