18.如圖,正四棱錐P-ABCD的體積為2,底面積為6,E為側(cè)棱PC的中點(diǎn),則異面直線PA與BE所成的角為60°

分析 如圖所示,建立空間直角坐標(biāo)系.設(shè)AB=a,則a2=6,解得a=$\sqrt{6}$.又$\frac{1}{3}×6×OP$=2,解得OP=1.再利用向量夾角公式、數(shù)量積運(yùn)算性質(zhì)即可得出.

解答 解:如圖所示,建立空間直角坐標(biāo)系.
設(shè)AB=a,則a2=6,解得a=$\sqrt{6}$.
又$\frac{1}{3}×6×OP$=2,解得OP=1.
∴A($\frac{\sqrt{6}}{2}$,-$\frac{\sqrt{6}}{2}$,0),P(0,0,1),B($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$,0),C(-$\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$,0),E$(-\frac{\sqrt{6}}{4},\frac{\sqrt{6}}{4},\frac{1}{2})$.
∴$\overrightarrow{PA}$=$(\frac{\sqrt{6}}{2},-\frac{\sqrt{6}}{2},-1)$,$\overrightarrow{BE}$=$(-\frac{3\sqrt{6}}{4},-\frac{\sqrt{6}}{4},\frac{1}{2})$.
∴cos$<\overrightarrow{PA},\overrightarrow{BE}>$=$\frac{\overrightarrow{PA}•\overrightarrow{BE}}{|\overrightarrow{PA}||\overrightarrow{BE}|}$=$\frac{-2}{\sqrt{4}×\sqrt{4}}$=-$\frac{1}{2}$.
∴$<\overrightarrow{PA},\overrightarrow{BE}>$=120°
∴異面直線PA與BE所成的角為60°
故答案為:60°

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、異面直線所成的角、向量夾角公式、四棱錐的體積計(jì)算公式、數(shù)量積運(yùn)算性質(zhì),考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,△ABC的外接圓為⊙O,延長(zhǎng)CB至Q,延長(zhǎng)QA至P,使得QA成為QC,QB的等比中項(xiàng).
(Ⅰ)求證:QA為⊙O的切線;
(Ⅱ)若AC恰好為∠BAP的平分線,AB=4,AC=6,求QA的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知點(diǎn)P為Rt△ABC的斜邊AB的延長(zhǎng)線上一點(diǎn),且PC與Rt△ABC的外接圓相切,CD⊥AB于D,求證:$\frac{CD}{CP}$=$\frac{DB}{BP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)y=f(x)在(0,2)上是增函數(shù),且f(x+2)的圖象關(guān)于y軸對(duì)稱,則( 。
A.f($\frac{π}{3}$)<f($\frac{3π}{4}$)<f(π)B.f(π)<f($\frac{π}{3}$)<f($\frac{3π}{4}$)C.f(π)<f($\frac{3π}{4}$)<f($\frac{π}{3}$)D.f($\frac{3π}{4}$)<f($\frac{π}{3}$)<f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.“10既是自然數(shù)又是偶數(shù)”為p∧q形式.(填“p∧q”或“p∨q”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=loga(x+b)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.“?x0∈R,x02+2x0+2≤0”的否定是?x∈R,x2+2x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案