3.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范圍.

分析 (1)當(dāng)a=5時(shí),原不等式可化為:${log_2}({\frac{1}{x}+5})>0$,解得答案;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0,可化為:(a-4)x2+(a-5)x-1=0,對(duì)a進(jìn)行分類(lèi)討論,可得答案.

解答 解:(1)當(dāng)a=5時(shí),由${log_2}({\frac{1}{x}+5})>0$,得$\frac{1}{x}+5>1$,
解得$x∈({-∞,-\frac{1}{4}})∪({0,+∞})$.-------------(5分)
(2)關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0,可化為:$\frac{1}{x}+a=({a-4})x+2a-5$,
即(a-4)x2+(a-5)x-1=0,
當(dāng)a=4時(shí),x=-1,經(jīng)檢驗(yàn),滿足題意.
當(dāng)a=3時(shí),x1=x2=-1,經(jīng)檢驗(yàn),滿足題意.
當(dāng)a≠3且a≠4時(shí),${x_1}=\frac{1}{a-4}$,x2=-1,x1≠x2
x1是原方程的解當(dāng)且僅當(dāng)$\frac{1}{x_1}+a>0$,即a>2;
x2是原方程的解當(dāng)且僅當(dāng)$\frac{1}{x_2}+a>0$,即a>1.
于是滿足題意的a∈(1,2].-----------(12分)
綜上,a的取值范圍為(1,2]∪{3,4}.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),對(duì)數(shù)函數(shù)的綜合應(yīng)用,分類(lèi)討論思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在極坐標(biāo)系中,過(guò)點(diǎn)$(1,\;\frac{π}{2})$且平行于極軸的直線方程是( 。
A.ρ=1B.ρsinθ=1C.ρcosθ=1D.ρ=2sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在三棱錐P-ACD中,AD⊥CD,AD=CD=2,△PAD為正角形,點(diǎn)F是棱PD的中點(diǎn),且平面PAD⊥平面ACD.
(1)求證;AF⊥平面PCD;
(2)求二面角P-AC-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若tanθ=-$\frac{1}{2}$,則$\frac{cos2θ}{1+sin2θ}$ 的值為( 。
A.3B.-3C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,正四棱錐P-ABCD的體積為2,底面積為6,E為側(cè)棱PC的中點(diǎn),則異面直線PA與BE所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ-2cosθ.
(1)求曲線C的參數(shù)方程;
(2)當(dāng)α=$\frac{π}{4}$時(shí),求直線l與曲線C交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若公比為q的等比數(shù)列{an}的首項(xiàng)a1=1且滿足an=$\frac{{a}_{n-1}+{a}_{n-2}}{2}$(n=3,4,…).
(1)求q的值和{an}的通項(xiàng)公式;
(2)令bn=$\frac{n}{2}$•an,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若數(shù)列{bn}不為等差數(shù)列,不等式-m2+$\frac{5}{2}$m+3≥(2-9Sn)•(-1)n-($\frac{1}{2}$)n-1對(duì)?n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某大學(xué)的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生的良好“光盤(pán)習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
做不到光盤(pán)能做到光盤(pán)合計(jì)
451055
301545
合計(jì)7525100
(1)若在犯錯(cuò)誤的概率不超過(guò)P的前提下認(rèn)為良好“光盤(pán)習(xí)慣”與性別有關(guān),那么根據(jù)臨界值最精確的P的值應(yīng)為多少?請(qǐng)說(shuō)明理由;
(2)現(xiàn)按女生是否做到光盤(pán)進(jìn)行分層,從45份女生問(wèn)卷中抽取了6份問(wèn)卷,若從這6份問(wèn)卷中隨機(jī)抽取2份,求兩份問(wèn)卷結(jié)果都是能做到光盤(pán)的概率.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k00.250.150.100.050.025
K01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{xn}滿足:x1=1,xn+1=-xn+$\frac{1}{2}$,則數(shù)列{xn}的前21項(xiàng)的和為( 。
A.5B.6C.11D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案