10.已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=loga(x+b)的大致圖象是( 。
A.B.C.D.

分析 根據已知中函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象,分析出a,b的范圍,進而可得函數(shù)g(x)=loga(x+b)的大致圖象.

解答 解:由已知中函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象可得:
-1<b<0,a>1,
故函數(shù)y=logax為增函數(shù),
函數(shù)g(x)=loga(x+b)的圖象由函數(shù)y=logax的圖象向左平移b個單位得到,
故函數(shù)g(x)=loga(x+b)的大致圖象是:

故選:C

點評 本題考查的知識點是函數(shù)的圖象,對數(shù)函數(shù)的圖象與性質,圖象的平移變換,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x)>0,且$\frac{2f(x)}{x}$<f′(x)$<\frac{3f(x)}{x}$(其中f′(x)是f(x)的導函數(shù))恒成立,則( 。
A.$\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$B.$\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$C.$\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$D.$\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知菱形ABCD,P為ABCD外一點,且PA⊥平面ABCD,AB=4,∠DAB=120°,PA=3.求:二面角P-BD-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,正四棱錐P-ABCD的體積為2,底面積為6,E為側棱PC的中點,則異面直線PA與BE所成的角為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在極坐標系中,點(2,$\frac{π}{6}$)到直線ρsinθ=3的距離等于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若公比為q的等比數(shù)列{an}的首項a1=1且滿足an=$\frac{{a}_{n-1}+{a}_{n-2}}{2}$(n=3,4,…).
(1)求q的值和{an}的通項公式;
(2)令bn=$\frac{n}{2}$•an,求數(shù)列{bn}的前n項和Sn;
(3)若數(shù)列{bn}不為等差數(shù)列,不等式-m2+$\frac{5}{2}$m+3≥(2-9Sn)•(-1)n-($\frac{1}{2}$)n-1對?n∈N*恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知點A在函數(shù)y=2x的圖象上,點B,C在函數(shù)y=4•2x的圖象上,若△ABC是以B為直角頂點的等腰直角三角形,且點A,C的縱坐標相同,則點B橫坐標的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0,b>0)的一條漸近線方程為y=-2x,則雙曲線的實軸長為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線x=$\frac{{a}^{2}}{c}$(c是橢圓的焦距長的一半)交x軸于A點,橢圓的上頂點為B,過橢圓的右焦點F作垂直于x軸的直線交橢圓的第一象限于P點,交AB于D點,若點D滿足2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$(O為坐標原點).
(I)求橢圓的離心率;
(II)若半焦距為3,過點A的直線l交橢圓于兩點M、N,問在x軸上是否存在定點C使$\overrightarrow{CM}$•$\overrightarrow{CN}$為常數(shù)?若存在,求出C點的坐標及該常數(shù)值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案