【題目】已知橢圓的右焦點(diǎn)為.直線被稱作為橢圓的一條準(zhǔn)線.點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).
(1)求證:.
(2)若點(diǎn)在軸的上方,,求面積的最小值.
【答案】(1)見解析;(2)1
【解析】
(1)聯(lián)立直線的方程和橢圓的方程,利用判別式列方程,求得點(diǎn)的坐標(biāo),求得點(diǎn)的坐標(biāo),通過計(jì)算得到,由此證得.
(2)求得,由此求得三角形面積的表達(dá)式,根據(jù)函數(shù)的單調(diào)性求得三角形面積的最小值.
(1)點(diǎn)的坐標(biāo)為.
聯(lián)立方程,消去后整理為
有,可得,,.
可得點(diǎn)的坐標(biāo)為.
當(dāng)時(shí),可求得點(diǎn)的坐標(biāo)為,
,.
有.
故有.
(2)若點(diǎn)在軸上方,必有
由(1)知
因?yàn)?/span>時(shí).由(1)知,,
由函數(shù)單調(diào)遞增,可得此時(shí).
故當(dāng)時(shí),的面積取得最小值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),某市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如圖所示的莖葉圖:
(1)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核為優(yōu)秀的概率;
(2)從圖中考核成績(jī)滿足的學(xué)生中任取3人,設(shè)表示這3人中成績(jī)滿足的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)你根據(jù)圖中數(shù)據(jù),判斷此次冰雪培訓(xùn)活動(dòng)是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與過點(diǎn)的直線交于兩點(diǎn).
(1)若,求直線的方程;
(2)若,軸,垂足為,探究:以為直徑的圓是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在圓心角為直角,半徑為的扇形區(qū)域內(nèi)進(jìn)行野外生存訓(xùn)練.如圖所示,在相距的,兩個(gè)位置分別為300,100名學(xué)生,在道路上設(shè)置集合地點(diǎn),要求所有學(xué)生沿最短路徑到點(diǎn)集合,記所有學(xué)生進(jìn)行的總路程為.
(1)設(shè),寫出關(guān)于的函數(shù)表達(dá)式;
(2)當(dāng)最小時(shí),集合地點(diǎn)離點(diǎn)多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右頂點(diǎn)為,離心率為,點(diǎn)在橢圓上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求經(jīng)過點(diǎn),且和軸相切的圓的方程;
(3)若,是橢圓上異于,的兩個(gè)點(diǎn),且,點(diǎn)在直線的上方,試判斷的平分線是否經(jīng)過軸上的一個(gè)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在,使得對(duì)任意恒成立,則函數(shù)在上有下界,其中為函數(shù)的一個(gè)下界;若存在,使得對(duì)任意恒成立,則函數(shù)在上有上界,其中為函數(shù)的一個(gè)上界.如果一個(gè)函數(shù)既有上界又有下界,那么稱該函數(shù)有界.
下述四個(gè)結(jié)論:①1不是函數(shù)的一個(gè)下界;②函數(shù)有下界,無上界;③函數(shù)有上界,無下界;④函數(shù)有界.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.②④C.③④D.②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且,若f(A)=1,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長(zhǎng)為6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱.以下關(guān)于的結(jié)論:①是周期函數(shù);②滿足;③在單調(diào)遞減;④是滿足條件的一個(gè)函數(shù).其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com