【題目】在三棱錐中, 是邊長為的等邊三角形, 中點, 中點.

(Ⅰ)求證:平面平面

(Ⅱ)求直線與平面所成角的正弦值的大。

(Ⅲ)在棱上是否存在一點,使得的余弦值為?若存在,指出點上的位置;若不存在,說明理由.

【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ)在棱上靠近點的三等分點處.

【解析】試題分析:(Ⅰ)連接 , 中, 中點,易得,同理可得: ,進(jìn)而利用面面垂直的判定定理,即可證明平面平面;

(Ⅱ)以為原點,以方向分別為, , 軸正方向建立空間直角坐標(biāo)系,求得平面的一個法向量為,利用向量的夾角公式,即可求解線面角的正弦值;

(Ⅲ)設(shè)再求得平面的一個法向量為和面的一個法向量為,利用向量的夾角公式,求解的值,從而確定點的位置.

試題解析:(Ⅰ)證明:連接 , 中, 中點,易得

同理可得: ,又∵,

,又∵,平面,又∵平面

∴平面平面

(Ⅱ)以為原點,以方向分別為 , 軸正方向建立空間直角坐標(biāo)系,

, , ,

設(shè)平面的一個法向量為,則有 ,

,設(shè)直線與面所成的角為,

(Ⅲ)設(shè)在棱上存在點,設(shè)

設(shè)平面的一個法向量為

則有,且,取, ,

平面,

∴設(shè)面的一個法向量為

設(shè)面與面所成二面角為

,

解得: (舍),∴. 

所以存在點且當(dāng)在棱上靠近點的三等分點處,滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的兩個焦點為, ,離心率為,點, 在橢圓上, 在線段上,且的周長等于

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過圓 上任意一點作橢圓的兩條切線與圓交于點, ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為為極點, 軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點,求

已知不等式的解集為.

(1)求的值;

(2)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2010年至2016年新開樓盤的平均銷售價格(單位:千元/平米)的統(tǒng)計數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

銷售價格y

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2010年至2016年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2018年新開樓盤的平均銷售價格.

附:參考數(shù)據(jù)及公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,若的三條邊長,則下列結(jié)論中正確的是( )

①存在,使、不能構(gòu)成一個三角形的三條邊

②對一切,都有

③若為鈍角三角形,則存在,使

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1討論的單調(diào)性;

2若函數(shù)的圖象與直線交于兩點,線段中點的橫坐標(biāo)為,證明: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點為原點,極軸所在的直線為軸建立平面直角坐標(biāo)系

(1)求圓的參數(shù)方程;

(2)在直角坐標(biāo)系中,點是圓上的動點,試求的最大值,并求出此時點的直角坐標(biāo);

(3)已知為參數(shù)),曲線為參數(shù)),若版曲線上各點恒坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)經(jīng)過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且

其中為坐標(biāo)原點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出了四個類比推理:

1類比推出為三個向量則

2a,b為實數(shù),則a=b=0類比推出為復(fù)數(shù),若

3在平面內(nèi),三角形的兩邊之和大于第三邊類比推出在空間中,四面體的任意三個面的面積之和大于第四個面的面積

4在平面內(nèi),過不在同一條直線上的三個點有且只有一個圓類比推出在空間中,過不在同一個平面上的四個點有且只有一個球

上述四個推理中,結(jié)論正確的個數(shù)有

A1個 B2個 C3個 D4個

查看答案和解析>>

同步練習(xí)冊答案