【題目】如圖是一個正方體的展開圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線段所在的直線是異面直線的有多少對?試以其中一對為例進行證明.

【答案】解:如圖所示:
,
把展開圖再還原成正方體,由經過平面外一點和平面內一點的直線和平面內
不經過該點的直線是異面直線可得,NC、DE、AF、BM這四條線段所在直線是異面直線的有:
AF和BM,AF和NC,AF和DE,BM和NC,BM和DE,NC和DE,共6對,
比如:BM和AF是異面直線,
證明如下:
∵F點在平面BCM中,A點在平面BCM外,
直線BM不經過F點,
由異面直線的定義,得到AF和BM是異面直線
【解析】先把正方體的展開圖再還原成正方體,利用異面直線的判定定理找出NC、DE、AF、BM中的異面直線.
【考點精析】解答此題的關鍵在于理解異面直線的判定的相關知識,掌握過平面外一點與平面內一點的直線和平面內不經過該點的直線是異面直線.(不在任何一個平面內的兩條直線).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中, ,分別為的中點.

1)求證: 平面;

2)求三棱錐的體積(錐體的體積公式,其中為底面面積, 為高)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的角A、B、C所對的邊分別是a、b、c,設向量 ,
(1)若 ,求證:△ABC為等腰三角形;
(2)若 ,邊長c=2,角C= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且).

(1)求的通項公式;

(2)設 , 是數(shù)列的前項和,求正整數(shù),使得對任意均有恒成立;

(3)設, 是數(shù)列的前項和,若對任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD﹣A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點,則下列結論錯誤的有
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,正確的是( )

①兩個平面同時垂直第三個平面,則這兩個平面可能互相垂直

②方程 表示經過第一、二、三象限的直線

③若一個平面中有4個不共線的點到另一個平面的距離相等,則這兩個平面平行

④方程可以表示經過兩點的任意直線

A. ②③ B. ①④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2﹣5x+6)和的定義域分別是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,設角A,B,C的對邊分別為a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大;
(2)若b=4 , 且c=a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習冊答案