A. | 4 | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2 |
分析 由正弦函數(shù)的對稱性可得sin(2×$\frac{π}{12}$+φ)=±1,結(jié)合范圍|φ|<$\frac{π}{2}$,即可解得φ的值,得到函數(shù)f(x)解析式,由題意利用正弦函數(shù)的性質(zhì)可得x1+x2=-$\frac{11π}{6}$,代入函數(shù)解析式利用誘導公式即可計算求值.
解答 解:∵sin(2×$\frac{π}{12}$+φ)=±1,
∴φ=kπ+$\frac{π}{3}$,k∈Z,
又∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=4sin(2x+$\frac{π}{3}$),
∴由2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,可得其對稱軸方程為:x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
∵x1,x2∈(-$\frac{7π}{6}$,-$\frac{5π}{12}$),x1≠x2時,f(x1)=f(x2),
∴x1,x2∈(-$\frac{7π}{6}$,-$\frac{2π}{3}$),且(x1,0),(x2,0)關(guān)于點(-$\frac{11π}{12}$,0)對稱,
∴x1+x2=-$\frac{11π}{6}$,
∴f(x1+x2)=4sin(-$\frac{11π}{3}$+$\frac{π}{3}$)=2$\sqrt{3}$.
故選:B.
點評 本題主要考查了正弦函數(shù)的圖象和性質(zhì),誘導公式在三角函數(shù)求值中的應用,考查了數(shù)形結(jié)合思想的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com