【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

【答案】解:(Ⅰ)∵b(1+cosC)=c(2﹣cosB), ∴由正弦定理可得:sinB+sinBcosC=2sinC﹣sinCcosB,可得:sinBcosC+sinCcosB+sinB=2sinC,
∴sinA+sinB=2sinC,
∴a+b=2c,即a,c,b成等差數(shù)列;
(Ⅱ)∵C= ,△ABC的面積為4 = absinC= ab,
∴ab=16,
∵由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab,
∵a+b=2c,
∴可得:c2=4c2﹣3×16,解得:c=4
【解析】(Ⅰ)由正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知可得sinA+sinB=2sinC,從而可求a+b=2c,即a,c,b成等差數(shù)列;(Ⅱ)由已知利用三角形面積公式可求ab=16,進(jìn)而利用余弦定理可得:c2=(a+b)2﹣3ab,結(jié)合a+b=2c,即可解得c的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(diǎn)(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對(duì)于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對(duì)稱;

⑤對(duì)于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來每件售價(jià)為25元,年銷售8萬件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,將沿折起,使平面平面.

(1)證明:平面;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

命題a=0,ab=0”的否命題是a=0,ab≠0”;

已知命題p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命題p”與命題“pq”都是真命題,則命題q一定是真命題;

命題0<a<1,loga(a+1)<lo.

其中正確命題的序號(hào)是_____.(把所有正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)通過對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述的變化關(guān)系,并說明理由,,,;

(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P(4,3),直線l與圓C相交于A,B兩點(diǎn),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語音月卡套餐,為了解通話時(shí)長(zhǎng),采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時(shí)長(zhǎng)(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計(jì)該校擔(dān)任班主任的教師月平均通話時(shí)長(zhǎng)的中位數(shù);

(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海中學(xué)在每學(xué)年的上學(xué)期會(huì)舉行體育嘉年華活動(dòng),假設(shè)在今年的活動(dòng)中共設(shè)了8個(gè)體育項(xiàng)目,高一某班的班主任參加了其中的若干個(gè)項(xiàng)目,甲、乙、丙三位同學(xué)猜測(cè)該老師參加的項(xiàng)目見下表:(“×”表示未參加,“√”表示參加)

項(xiàng)目1

項(xiàng)目2

項(xiàng)目3

項(xiàng)目4

項(xiàng)目5

項(xiàng)目6

項(xiàng)目7

項(xiàng)目8

×

×

×

×

×

×

×

×

×

×

×

×

×

×

老師告訴甲、乙、丙:“你們分別猜對(duì)5次、5次、6次”,由此請(qǐng)你猜測(cè)該老師參加的體育項(xiàng)目編號(hào)依次為________

查看答案和解析>>

同步練習(xí)冊(cè)答案